Page 715 - Handbook Of Integral Equations
P. 715

2
                       2
               26.    x sin xdx =2x sin x – (x – 2) cos x.

                       3
                                    2
                                                3
               27.    x sin xdx =(3x – 6) sin x – (x – 6x) cos x.
                                        n                      n–1
                                                   2n–2k                  2n–2k–1
                                             k+1  x                  k   x
                       2n
               28.    x  sin xdx =(2n)!   (–1)           cos x +  (–1)            sin x .
                                                (2n – 2k)!             (2n – 2k – 1)!
                                       k=0                     k=0

                                            n          x 2n–2k+1             x 2n–2k

               29.    x 2n+1  sin xdx =(2n + 1)!  (–1) k+1       cos x +(–1) k       sin x .
                                                     (2n – 2k + 1)!         (2n – 2k)!
                                           k=0

                       p
                                   p
               30.    x sin xdx = –x cos x + px p–1  sin x – p(p – 1)  x p–2  sin xdx.

                                1
                         2
               31.    sin xdx = x –  1  sin 2x.
                                2   4

                                    2
                                       1
                                 1
                          2
               32.    x sin xdx = x – x sin 2x –  1  cos 2x.
                                 4     4        8

                                           3
                         3
               33.    sin xdx = – cos x +  1  cos x.
                                       3
                                                n–1
                                  1        (–1)  n         sin[(2n – 2k)x]
                                                      k
                                                         k
                                      n
               34.    sin 2n  xdx =  C x +         (–1) C 2n           ,
                                     2n
                                 2 2n      2 2n–1             2n – 2k
                                                k=0
                                   m!
                            k
                     where C m  =        are binomial coefficients (0! = 1).
                               k!(m – k)!
                                       n
                                   1        n+k+1  k  cos[(2n – 2k +1)x]

                         2n+1
               35.    sin   xdx =        (–1)   C 2n+1               .
                                  2 2n                   2n – 2k +1
                                      k=0
                       dx

               36.         =ln tan  x    .

                       sin x      2
                        dx

               37.          = – cot x.
                         2
                       sin x
                        dx      cos x   1

               38.          = –       +  ln tan  x    .

                                   2
                         3
                       sin x   2 sin x  2      2
                        dx         cos x      n – 2     dx

               39.          = –             +               , n >1.
                         n
                       sin x   (n – 1) sin n–1  x  n – 1  sin n–2  x
                                n–1
                        xdx         (2n – 2)(2n – 4) ... (2n – 2k +2)  sin x +(2n – 2k)x cos x

               40.           = –
                       sin 2n  x    (2n – 1)(2n – 3) ... (2n – 2k +3) (2n – 2k + 1)(2n – 2k) sin 2n–2k+1  x
                                k=0
                       2 n–1 (n – 1)!
                     +            ln |sin x| – x cot x .
                        (2n – 1)!!
                                     sin[(b – a)x]  sin[(b + a)x]

               41.    sin ax sin bx dx =        –           , a ≠ ±b.
                                       2(b – a)     2(b + a)
                                       2         b + a tan x/2         2   2
                                 
                                 
                                  √       arctan  √                if a > b ,
                                 
                         dx          a – b          a – b
                                     2   2          2   2
               42.              =                √
                                                   2
                       a + b sin x    1       b –  b – a + a tan x/2    2  2
                                                       2
                                  √       ln    √                  if b > a .
                                 
                                     2   2        2   2
                                     b – a    b +  b – a + a tan x/2

                           dx            b cos x         a        dx
               43.                =                  +                  .
                                                        2
                                     2
                                         2
                       (a + b sin x) 2  (a – b )(a + b sin x)  a – b 2  a + b sin x
                                                  √
                                                     2   2
                           dx           1           a + b tan x
               44.                = √        arctan           .
                        2
                               2
                           2
                       a + b sin x  a a + b 2           a
                                        2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 699
   710   711   712   713   714   715   716   717   718   719   720