Page 719 - Handbook Of Integral Equations
P. 719

Supplement 3


               Tables of Definite Integrals






               Throughout Supplement 3 it is assumed that n is a positive integer, unless otherwise specified.


               3.1. Integrals Containing Power-Law Functions

                     ∞   dx       π
               1.        2    = √    .
                    0  ax + b   2 ab
                                √
                     ∞
                         dx    π 2

               2.       4    =     .
                    0  x +1      4
                      x dx       n          (–1)
                      1  n               n     k
               3.           =(–1)  ln 2 +         .
                    0  x +1                   k
                                         k=1
                     ∞  x  dx      π
                        a–1
               4.             =       ,  0 < a <1.
                    0   x +1    sin(πa)
                     ∞  x   dx    π(1 – λ)
                         λ–1
               5.             2  =  λ     ,  0 < λ <2.
                    0  (1 + ax)   a sin(πλ)
                      1     dx           β
               6.      2             =      .
                    0  x +2x cos β +1  2 sin β
                     1     a  –a
                        x + x    dx     π sin(aβ)
               7.                    =           ,  |a| <1, β ≠ (2n +1)π.
                       2
                      x +2x cos β +1   sin(πa) sin β
                    0
                     ∞    x   dx     π(a   – b  )
                           λ–1          λ–1  λ–1
               8.                  =             ,  0 < λ <2.
                    0  (x + a)(x + b)  (b – a) sin(πλ)
                        λ–1
                     ∞  x  (x + c) dx   π     a – c     b – c
               9.                   =             a λ–1  +  b λ–1  ,  0 < λ <1.
                    0   (x + a)(x + b)  sin(πλ)  a – b  b – a
                      ∞  x dx    πλ(1 – λ)
                          λ
               10.            3  =        ,  –1< λ <2.
                     0  (x +1)    2 sin(πλ)
                      ∞     x   dx          π b   – a
                             λ–1                λ–2  λ–2
               11.        2   2  2   2  =                 ,  0 < λ <4.
                                            2
                     0  (x + a )(x + b )  2 a – b 2  sin(πλ/2)
                      1
                                      πa(1 – a)
                        a
               12.     x (1 – x) 1–a  dx =    ,  –1< a <1.
                     0                2 sin(πa)
                           dx         π
                       1
               13.      a      1–a  =     ,  0 < a <1.
                     0  x (1 – x)   sin(πa)
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 703
   714   715   716   717   718   719   720   721   722   723   724