Page 711 - Handbook Of Integral Equations
P. 711

sign x      b + a cosh x           2   2
                                   
                                    – √      arcsin                   if a < b ,
                                   
                          dx           b – a      a + b cosh x
                                        2   2
               16.               =                   √  2  2
                       a + b cosh x    1      a + b +  a – b tanh(x/2)   2   2
                                    √       ln      √                 if a > b .
                                   
                                        2
                                                           2
                                                       2
                                       a – b 2  a + b –  a – b tanh(x/2)
                 Integrals containing sinh x.

                                     1
               17.    sinh(a + bx) dx =  cosh(a + bx).
                                     b

               18.    x sinh xdx = x cosh x – sinh x.

                       2
                                    2
               19.    x sinh xdx =(x + 2) cosh x – 2x sinh x.
                                         n               n
                                            x 2k            x 2k–1
               20.    x 2n  sinh xdx =(2n)!      cosh x –          sinh x .
                                            (2k)!          (2k – 1)!
                                        k=0             k=1
                                             n
                                                  x 2k+1        x 2k
               21.    x 2n+1  sinh xdx =(2n + 1)!       cosh x –    sinh x .
                                                (2k + 1)!      (2k)!
                                            k=0

                       p
                                   p
               22.    x sinh xdx = x cosh x – px p–1  sinh x + p(p – 1)  x p–2  sinh xdx.

                                  1
                          2
               23.    sinh xdx = – x +  1  sinh 2x.
                                  2   4

                                              3
                          3
               24.    sinh xdx = – cosh x +  1  cosh x.
                                         3
                                                    n–1

                                          x      1        k  k  sinh[2(n – k)x]
                          2n
                                     n
                                       n
               25.    sinh  xdx =(–1) C      +         (–1) C              ,  n =1, 2, ...
                                       2n  2n   2n–1        2n
                                         2     2                 2(n – k)
                                                    k=0
                                        n                              n
                                    1        k  k  cosh[(2n – 2k +1)x]      n+k  k  cosh  x
                                                                                      2k+1
                          2n+1
               26.    sinh   xdx =        (–1) C 2n+1                =   (–1)  C n         ,
                                   2 2n                2n – 2k +1                   2k +1
                                       k=0                            k=0
                     n =1, 2, ...
                                 1               p – 1
                          p
               27.    sinh xdx =   sinh p–1  x cosh x –  sinh p–2  xdx.
                                 p                 p

                                         1
               28.    sinh ax sinh bx dx =    a cosh ax sinh bx – b cosh bx sinh ax .
                                        2
                                       a – b 2
                        dx     1

               29.           =   ln tanh  ax    .

                       sinh ax  a       2

                         dx     cosh x     1
               30.        2n  =        –   2n–1
                       sinh  x  2n – 1  sinh   x
                       n–1         k
                             k–1  2 (n – 1)(n – 2) ... (n – k)  1
                     +   (–1)                                         ,  n =1, 2, ...
                                (2n – 3)(2n – 5) ... (2n – 2k – 1) sinh 2n–2k–1  x
                       k=1
                                                 n–1
                         dx       cosh x    1          k–1  (2n–1)(2n–3) ... (2n–2k+1)  1

               31.        2n+1  =       –   2n  +   (–1)     k                       2n–2k
                       sinh  x     2n    sinh  x            2 (n–1)(n–2) ... (n–k)  sinh  x
                                                 k=1
                           (2n – 1)!!     x
                          n
                     +(–1)          ln tanh  ,  n =1, 2, ...
                             (2n)!!       2
                                                           √
                          dx          1      a tanh(x/2) – b +  a + b
                                                             2   2
               32.               = √      ln               √      .
                       a + b sinh x  a + b 2  a tanh(x/2) – b –  a + b 2
                                                             2
                                     2
                                                                      √
                                                                         2  2
                       Ax + B sinh x   B     Ab – Ba    a tanh(x/2) – b +  a + b
               33.                 dx =  x + √        ln              √      .
                        a + b sinh x    b    b a + b 2  a tanh(x/2) – b –  a + b 2
                                                                        2
                                                2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 695
   706   707   708   709   710   711   712   713   714   715   716