Page 725 - Handbook Of Integral Equations
P. 725

∞              Γ(1/p)    π

                              p
               14.      cos ax  dx =   1/p  cos  ,  a >0,  p >1.
                     0               pa       2p
                      π/2
                                   π 1 ⋅ 3 ... (2n – 1)
               15.       sin 2n  xdx =            ,  n =1, 2, ...
                                    2  2 ⋅ 4 ... (2n)
                     0
                      π/2
                                      2 ⋅ 4 ... (2n)
               16.       sin 2n+1  xdx =          ,  n =1, 2, ...
                                     1 ⋅ 3 ... (2n +1)
                     0
                      ∞  sin ax    π

               17.            dx =  sign a.
                          x        2
                     0
                      ∞  sin ax    π
                           2
               18.         2   dx =  |a|.
                     0    x        2
                      ∞  sin ax      π

               19.       √    dx =     ,  a >0.
                           x         2a
                     0
                      π
                                   π 2   Γ(µ +1)
                           µ
               20.     x sin xdx =  µ+1           ,  µ > –1.
                                                2
                                        Γ µ +
                     0             2         1
                                             2
                      ∞

                                      –µ
               21.      x µ–1  sin ax dx = a Γ(µ) sin  1  πµ ,  a >0,  0 < µ <1.
                                                2
                     0
                      π/2
                            sin xdx     1   1+ k
               22.       √           =    ln     .
                                  2
                               2
                     0     1 – k sin x  2k   1 – k
                      ∞

                             2      1   π
               23.      sin ax  dx =      ,  a >0.
                                    2   2a
                     0
                      ∞

                             p      Γ(1/p)    π
               24.      sin ax  dx =      sin   ,  a >0,  p >1.
                                     pa 1/p   2p
                     0
                       π/2                      n! m!
               25.       sin 2n+1  x cos 2m+1  xdx =    ,  n, m =1, 2, ...
                     0                       2(n + m + 1)!
                       π/2
                                                  1
                                           1

               26.       sin p–1  x cos q–1  xdx = B     1  p, q .
                                           2   2  2
                     0
                      2π

                                                         2

               27.      (a sin x + b cos x) 2n  dx =2π  (2n – 1)!!   a + b 2 n ,  n =1, 2, ...
                     0                          (2n)!!
                                        π
                                        2  if |a| <1,

                      ∞  sin x cos ax
               28.                dx =   π 4  if |a| =1,
                     0      x          
                                         0  if 1 < |a|.
                       π    sin xdx         2   if 0 ≤ a ≤ 1,
               29.      √              =
                          2
                     0   a +1 – 2a cos x   2/a if 1 < a.
                      ∞  tan ax    π

               30.            dx =   sign a.
                     0    x        2
                       π/2               π
               31.      (tan x) ±λ  dx =     1    ,  |λ| <1.
                     0               2 cos  2  πλ
                      ∞                 b

               32.      e –ax  sin bx dx =  2  2  ,  a >0.
                     0               a + b
                      ∞                 a

               33.      e –ax  cos bx dx =  2  2  ,  a >0.
                     0                a + b
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 709
   720   721   722   723   724   725   726   727   728   729   730