Page 68 - Handbook of Civil Engineering Calculations, Second Edition
P. 68

STATICS, STRESS AND STRAIN, AND FLEXURAL ANALYSIS  1.51

























                              FIGURE 32. Transverse section of  FIGURE 33. Curved member in bending.
                              a post.




                              2. Compute the section modulus
                              Determine the section modulus of the rectangular cross section with respect to each axis.
                                                                                        2
                                          2
                                                                         3
                                                      2
                                                               3
                                      1
                                              1
                                                                                1
                              Thus S x   ( /6)bd   ( /6)(18)(24)   1728 in (28,321.9 cm ); S y   ( /6)(24)(18)   1296
                                        3
                               3
                              in (21,241 cm ).
                              3. Compute the stresses produced
                              Compute the uniform stress caused by the concentric load and the stresses at the edges
                              caused by the bending moments. Thus f 1   P/A   100,000/[18(24)]   231 lb/sq.in. (1592.7
                              kPa); f x   M x /S x   200,000/1728   116 lb/sq.in. (799.8 kPa); f y   M y /S y   100,000/1296
                              77 lb/sq.in. (530.9 kPa).
                              4. Determine the stress at each corner
                              Combine the results obtained in step 3 to obtain the stress at each corner. Thus f A   231
                                116   77   424 lb/sq.in. (2923.4 kPa); f B   231   116   77   270 lb/sq.in. (1861.5
                              kPa); f C   231   116   77   192 lb/sq.in. (1323.8 kPa); f D   231   116   77   38
                              lb/sq.in. (262.0 kPa). These stresses are all compressive because a positive stress is con-
                              sidered compressive, whereas a tensile stress is negative.
                              5. Check the computed corner stresses
                              Use the following equation that applies to the special case of a rectangular cross section: f
                                (P/A)(1 ± 6e x /d x   6e y /d y ), where e x and e y   eccentricity of load with respect to the x
                              and y axes, respectively; d x and d y   side of rectangle, in. (mm), normal to x and y axes,
                              respectively. Solving for the quantities within the brackets gives 6e x /d x   6(2)/24   0.5;
                              6e y /d y   6(1)/18   0.33. Then f A   231(1   0.5   0.33)   424 lb/sq.in. (2923.4 kPa); f B
                                231(1   0.5   0.33)   270 lb/sq.in. (1861.5 kPa); f C   231(1   0.5   0.33)   192
                              lb/sq.in. (1323.8 kPa); f D   231(1   0.5   0.33)   38 lb/sq.in. (262.0 kPa). These results
                              verify those computed in step 4.
   63   64   65   66   67   68   69   70   71   72   73