Page 205 - Handbook of Materials Failure Analysis
P. 205

5 Case Study    201




                           Table 8.7 Evaluation of the Stiffness Matrix Elements
                                                              134,915.35 N/m
                                 K 00 ¼K 1 ¼
                                                              134,915.35 N/m
                           K 01 ¼K 10 ¼ K 1 ¼
                                                           303,131,565.91 N/m
                              K 11 ¼K 0 +K 1 ¼



                                        K 00 K 01  2  M 0
                                                          0
                                                               ¼ 0              (8.17)
                                                 ω
                                        K 10 K 11     0 M 1


                                             2
                                        K 00  ω   M 0  K 01

                                                                ¼ 0             (8.18)
                                                        2
                                           K 10   K 11  ω   M 1

                  The determinant will be:
                                        2            2
                                   K 00  ω   M 0   K 11  ω   M 1  K 01   K 10 ¼ 0  (8.19)
                  The resolution of this equation gives us the vibration pulsations of the two main
                  modes:
                                    2              ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3
                                                 s
                                  1    K 00  K 11       K 00  K 11    2    K 01   K 10
                             ω 2    4     +            +     +4          5      (8.20)
                              1,2
                                  2    M 0  M 1     M 0  M 1     M 0   M 1
                                ¼
                  Knowing the pulsations of the eigenmodes ω 1 and ω 2 , we deduct the periods of the
                  two main modes:
                                               2π        2π
                                           T 1 ¼  and T 2 ¼
                                               ω 1       ω 2
                  The calculation of the pulsations and periods of the two main eigenmodes is given in
                  the Table 8.8.
                  5.3.5 Determination of the eigenmodes
                  The system has a same number of degrees of freedom than eigenmodes. For the

                                                    a i0
                                                i
                  determination of the eigenmodes a ¼   , we must solve the equation:
                                             fg
                                                    a i1
                                               2
                                          K ½Š ω   M½Š   a ¼ 0                  (8.21)
                                                        i
                                               i
                                                           fg
                                                     fg
                   Table 8.8 Evaluation of the Pulsations and Periods of the Two Main
                   Eigenmodes
                                       ω 2           Pulsation ω       Period T (s)
                      Mode 1           5.95             2.44              2.58
                      Mode 2         2,385.63           48.84             0.13
   200   201   202   203   204   205   206   207   208   209   210