Page 133 - Hardware Implementation of Finite-Field Arithmetic
P. 133
116 Cha pte r F o u r
4.7 Comments and Conclusions
The experimental results confirm the theoretical results. The plus-
minus algorithm gives the shortest computation time. Furthermore,
it also gives the most cost-effective circuit.
4.8 References
[BK83] R. P. Brent and H. T. Kung. “Systolic Arrays for Linear Time GCD
Computation.” Proceedings of VLSI’83, pp. 145–154, 1983.
[DBS06] J.-P. Deschamps, G. Bioul, and G. Sutter. Synthesis of Arithmetic Circuits.
Wiley, Hoboken, New Jersey, 2006.
[DS06] J.-P. Deschamps and G. Sutter. “Hardware Implementation of Finite-Field
Division.” Acta Applicandae Mathematicae, vol. 93, pp.119–147, September
2006.
[EL04] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann,
San Francisco, 2004.
[HMV04] D. Hankerson, A. Menezes, and S. Vanstone. Guide Elliptic Curve
Cryptography. Springer, New York, 2004.
[Knu81] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, vol. 2, 2d ed., Addison-Wesley, MA, USA, 1981.
[MBQ04] G. Meurice de Dormale, Ph. Bulens, and J.-J. Quisquater. “Efficient
Modular Division Implementation.” Lecture Notes in Computer Sciences, Vol. 3203,
pp. 231–240, 2004.
[MOV96] A. J. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, 1996.
[Par00] B. Parhami. Computer Arithmetic. Oxford University Press, New York,
2000.
[Tak98] N. Takagi. “A VLSI Algorithm for Modular Division Based on the
Binary GCD Algorithm.” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E81-A, no. 5, pp. 724–728,
May 1998.