Page 242 - Hardware Implementation of Finite-Field Arithmetic
P. 242

222    Cha pte r  Se v e n


                  It was proven in [RH04] that the following equalities hold:
                                            −
                           e () 0  +  e ( ) 1  =  h  ;  m k ≤ ≤ m 2−
                                                  j
                                     +
                           j    j   j k 2 − m  2                    (7.68)
                                                j
                         e () 2  +  e ( ) 3  =  e  0 ()  +  e  1 ( )  ;  k ≤ ≤  m − 1
                                        −
                                   −
                              j
                                             3
                          j
                                  j jk 2  jk 2
                                                               T
                  Let  e (01 ) , 0 ≤ j ≤ m – 1, represent the elements of (P  + P ) E, where P
                      j                                   0  1          0
               and P  are the submatrices shown in Fig. 7.10a and 7.10b, respectively.
                    1
               Then, substituting t = 3 in Eq. (7.54) and using Eq. (7.68), the coordi-
                                                                 T
               nates of the product C = AB given in Eq. (7.29) as C = D + P E can be
               found as follows [RH04]:
                           c =  d +  e (01 )  +  e (01 )  ; 0  ≤  j ≤  m − 1
                                        −
                            j   j  j    j k 2                       (7.69)
                      ( )
                      01
               where  e  = 0 for j < k  and
                      −
                      jk          2
                        2
                                ⎧  e ; 0 ≤≤  k −  1
                                    () 0
                                          j
                                ⎪   j         1
                                 e ⎪  () 0  +  e ;  k ≤ ≤ m −  k − 1
                                      ( ) 1
                                             j
                                                       1
                           e (01 )  = ⎨  j  j  1    2               (7.70)
                            j            m − k ≤ ≤  m −
                                ⎪  h jk − m  ;  2  j  2
                                   +
                                    2
                                ⎪  e ;  j =  m −  1
                                    1 ()
                                ⎩   j
                                             8
               Example 7.3      Multiplication in  GF(2 ) for class 1 pentanomial  f(x)  =
                8
                       3
                   5
               x  + x  + x  + x + 1
               Let f(x) = x  + x  + x  + x + 1 be the generating irreducible pentanomial
                               3
                        8
                           5
                      8
               for GF(2 ). From Fig. 7.10, the P matrix is as follows:
                                 ⎛ 11 0 11 000⎞
                                 ⎜ 0 11 0 11 00 ⎟
                                 ⎜                    ⎟
                                 ⎜ 00 11 0 11 0       ⎟
                                 ⎜
                              P = 000 11 0 11 ⎟                     (7.71)
                                 ⎜ 1 1 01 01 01 ⎟
                                 ⎜                    ⎟
                                  1001 1 0 01 0
                                 ⎜ ⎝ 01 01 1 0 01⎠    ⎟

                                                  T
                  From Eq. (7.71), the product C = D + P E given in Eq. (7.29) can be
               computed as follows:
                            c  =       d + ( e + e +  e )
                             0          0   0  4  5
                            c  =     d + ( e + e +  e + )
                                                   e
                             1        1   0  1   4  6
                            c  =       d + ( + e  + e )
                                           e
                             2          2   1 1  2  5
                            c  = d  + e (  + e  + e  + e  + e  + e )  (7.72)
                             3     3   0  2  3   4  5  6
                                           +
                            c  =     d  + e ( + e  + e  + e )
                             4        4   0  1   3  6
                            c  =       d  + e (  + e  + e )
                             5          5   1  2  4
                            c  =       d  + e (  + e  + e )
                             6          6   2  3  5
                            c c  =     d + ( e + e + )
                                                  e
                             7          7   3  4  6
   237   238   239   240   241   242   243   244   245   246   247