Page 151 - High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications
P. 151

128  High Temperature Solid  Oxide Fuel Cells: Fundamentals, Design and Applications

         Table 5.2  Oxygen diffusion coefficients  (D? of LaMn03-based perovskites [32,35]
         Composition   Temperature   P(02)   Isotope oxygen   Oxygen surface   Ref.
                        (“C)       (atm)   diffusion coefficient,   exchange coefficient,
                                          D’ (cm2 s-l)    k* (cm s-l)

                         900       1      2.44 x 10-13                     32
                        1000       1      4.78 x                           32
                         900       1      1.27 x                            32
                        1000       1      1.33 x          -                 32
                        1000       1      6.60 x 10-13    5.62 x lovs       35
                         900       1      1.60 x 10-13    1.78 x            35
                         800       1      4.00 x          5.62 x 10-9       35
                         700       1      3.10 x 1O-l6    1.01 x 10-9       35
                        1000       1      9.01 x 10-8     5.64 x            35
                         900       1      1.03 x          2.02 x 10-6       35
                         8  00     1      9.87 x          6-31 x 10-7       35
                         700       1      1.04 x 10-lo    1.58 x lo-’       35



         oxide ions  around  the  cathode/electrolyte interface.  The  elemental steps for
         cathode  reaction  are:  (i)  oxygen  molecule  adsorption  and  dissociation  into
         oxygen atoms at the cathode surface, (ii) surface diffusion of  adsorbed oxygen,
         (iii) incorporation  and  subsequent  bulk  diffusion of  oxygen inside the oxide
         lattice,  (iv) incorporation  of  adsorbed  oxygen  in  the  02/cathode/electrolyte
         three-phase boundary, and (v) transport of oxide  ions in the solid electrolyte. The
         charge transfer reaction  can take place in steps (i), (iii), or (iv). Any of  these
         elemental steps can limit the rate of the cathodic reaction.
           Isotope oxygen (l802) labelling is one of  the effective methods to analyse the
         reaction mechanism, as previously mentioned. Figure 5.6 shows depth diffusion
         profiles of the oxygen isotope and other metal elements from a dense (La,Sr)Co03
                                     F-

                            in gaS phase
                                          160+’80)
                                   1 0-1

                                   1 o1


                                   1 o-~

                                   1 o4


                                   1 o-~   200   400   600   800x10
                                     -

                                     9
                                                x  /nm
         Figure 5.6  Oxygen isotope and elemental difusion profiles from a dense LaCo03 cathode layer surface into
                  CeO, electrolyte. 2802 annealing for240 sat 800”C, p(l802) = 0.01 bar[43].
   146   147   148   149   150   151   152   153   154   155   156