Page 75 - Hybrid-Renewable Energy Systems in Microgrids
P. 75
Integrated renewable energy sources with droop control techniques-based microgrid operation 59
[8] Carpinelli, G., Mottola, F., Proto, D., Varilone, P., 2017. Minimizing unbalances in low-volt-
age microgrids: optimal scheduling of distributed resources. Appl. Energy 191, 170–182.
[9] Selim Ustun, T., Ozansoy, C., Zayegh, A., 2011. Recent developments in microgrids and
example cases around the world—a review. Renew. Sust. Energy Rev. 15, 4030–4041.
[10] Hossain, M.A., Pota, H.R., Haruni, A.M.O., Hossain, M.J., 2017. DC-link voltage regula-
tion of inverters to enhance microgrid stability during network contingencies. Elect. Power
Sys. Res. 147, 233–244.
[11] Bashir Tayab, U., Azrik Bin Roslan, M., Jenn Hwai, L., Kashif, M., 2017. A review of
droop control techniques for microgrid. Renew. Sust. Energy Rev. 76, 717–727.
[12] Yang, N., Paire, D., Gao, F., Miraoui, A., Liu, W., 2015. Compensation of droop control
using common load condition in DC microgrids to improve voltage regulation and load
sharing. Int. J. Elec. Power Energy Sys. 64, 752–760.
[13] Munawer Pasha, A., Zeineldin, H.H., Saad Al-Sumaiti, A., Shawky El Moursi, M., Fahamy
El Sadaany, E., 2017. Conservation voltage reduction for autonomous microgrids based on
v–i droop characteristics. IEEE Trans. Sustain. Energy 8 (3), 1076–1085.
[14] Rezvani, A., Khalili, A., Mazareie, A., Gandomkar, M., 2016. Modeling, control, and sim-
ulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid
fuzzy-neural method. ISA Trans. 63, 448–460.
[15] Prasad, M.R., Sravan Kumar, V., Srihari, P., 2015. Voltage control for photo voltaic systems
with MPPT and battery storage in micro grids. Int. Res. J. Eng. Technol. 2 (2), 485–491.
[16] The Emerging Transactive Microgrid Controller, IEEE Power & Energy Magazines (2017),
80–87.
[17] Lago, J., Heldwein, M.L., 2011. Operation and control-oriented modeling of a power con-
verter for current balancing and stability improvement of DC active distribution networks.
IEEE Trans. Power Electron. 26 (3), 877–885.
[18] Piwko, R., 2012. Grid Integration of Large-Capacity Renewable Energy Sources and Use
of Large-Capacity Electrical Energy Storage. White Paper IEC.
[19] Ahmed, M., Amin, U., Aftab, S., Ahmed, Z., 2015. Integration of renewable energy re-
sources in microgrid. Energy Power Eng. 7, 12–29.
[20] Strunz, K., Abbasi, E., Nguyen Huu, D., 2014. DC microgrid for wind and solar power
integration. IEEE J. Emerg. Selec. Topics Power Electron. 2 (1), 115–126.
[21] JohnJusto, J., Mwasilu, F., Lee, J., Jung, J.-W., 2013. AC-microgrids versus DC-microgrids
with distributed energy resources: a review. Renew. Sust. Energy Rev. 23, 387–405.
[22] Lu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, L., Teodorescu, R., 2012. SoC-
based droop method for distributed energy storage in DC microgrid applications. In Proc.
IEEE Int. Symp. Indust. Electro. (ISIE), 1640-1645.
[23] Unamuno, E., Andoni Barrena, J., 2015. Hybrid AC/DC microgrids — Part I: review and
classification of topologies. Renew. Sust. Energy Rev. 52, 1251–1259.
[24] Majumder, R., 2013. Some aspects of stability in microgrids. IEEE Trans. Power Sys. 28
(3), 3243–3252.
[25] Han, X., Zhang, H., Yu, X., Wang, L., 2016. Economic evaluation of grid-connected micro-
grid system with photovoltaic and energy storage under different investment and financing
models. Appl. Energy 184, 103–118.
[26] Prasanth Ram, J., Rajasekar, N., Miyatake, M., 2017. Design and overview of maximum
power point tracking techniques in wind and solar photovoltaic systems: a review. Renew.
Sust. Energy Rev. 73, 1138–1159.
[27] Mosobi, R.W., Chichi, T., Gao, S., 2014. Modeling and Power Quality Analysis of In-
tegrated Renewable Energy System. , 18th National Power System Conference (NPSC),
IEEE (18–20 Dec) 1–6.