Page 204 - Innovations in Intelligent Machines
P. 204

196    R.W. Beard
                                                          qV a sin θ  +sin θ
                                                  ⎛                          ⎞
                                                             g
                                                  ⎜ rV a cos θ−pV a sin θ    ⎟
                                          h(x, u)=  ⎜             − cos θ sin φ ⎟  .
                                                           g
                                                  ⎝                          ⎠
                                                       −qV a cos θ
                                                           g   − cos θ cos φ
                              Implementation of the extended Kalman filter requires the Jacobians
                                                                    q sin φ−r cos φ
                                  ∂f     q cos φ tan θ − r sin φ tan θ  cos 2 θ
                                     =
                                  ∂x        −q sin φ − r cos φ          0
                                       ⎛                      qV a                   ⎞
                                              0                  cos θ +cos θ
                                                               g
                                  ∂h   ⎜                  rV a     pV a              ⎟
                                                                                     ⎟
                                       ⎜ − cos φ cos θ  −  g  sin θ −  g  cos θ +sin φ sin θ ⎟ .
                                  ∂x  = ⎜                                            ⎠
                                       ⎝
                                          sin φ cos θ           qV a  +cos φ sin θ
                                                                 g
                           The state estimation algorithm is given by Algorithm 2.
                              Figure 10 shows the actual and estimated roll and pitch attitudes obtained
                           by using this scheme, where we note significant improvement over the results
                           shown in Figures 6 and 7. The estimates are still not precise due to the
                           approximation that ˙u =˙v =˙w = β = θ − α = 0. However, the results are
                           adequate enough to enable non-aggressive MAV maneuvers.


                                   40
                                   20
                             φ (deg)
                                    0
                                                                                 actual
                                  - 20                                           estimated
                                  - 40
                                      0     2      4     6      8     10    12     14    16


                                   40
                                   20
                             θ (deg)
                                    0
                                                                                 actual

                                  - 20                                           estimated

                                  - 40
                                      0     2      4     6      8     10    12     14    16
                                                            time (sec)
                           Fig. 10. Actual and estimated values of φ and θ using the continuous-discrete
                           extended Kalman filter
   199   200   201   202   203   204   205   206   207   208   209