Page 201 - Innovations in Intelligent Machines
P. 201

State Estimation for Micro Air Vehicles  193
                           We can compute the evolution for P as
                                              d     T
                                          ˙
                                         P =    E{˜x˜x }
                                              dt
                                                ˙  T   ˙ T
                                           = E{˜x˜x +˜x˜x }
                                                    T       T     T  T    T  T
                                           = E A˜x˜x + Gξ˜x +˜x˜x A +˜xξ G
                                                      T
                                                                T T
                                                                          T
                                                                              T
                                           = AP + PA + GE{ξ˜x } + E{˜xξ }G ,
                           where
                                               
        T      t            T       +
                                                                         T A (t−τ)
                                        T
                                                                    T
                                    E{ξ˜x } = E ξ(t)˜x 0 e A t  +  ξ(t)ξ (τ)G e   dτ
                                                             0
                                              1   T
                                           =   QG ,
                                              2
                           which implies that
                                                  ˙
                                                                      T
                                                              T
                                                 P = AP + PA + GQG .
                           At Measurements.
                           At a measurement we have that
                                               +
                                              ˜ x = x − ˆx +

                                                        −
                                                 = x − ˆx − L Cx + η − Cˆx −
                                                    −
                                                            −
                                                 =˜x − LC˜x − Lη.
                           Therefore
                                             + +T
                                    P  +  = E{˜x ˜x  }
                                           ,                                    -
                                                                                T
                                       = E    ˜ x − LC˜x − Lη  ˜ x − LC˜x − Lη
                                               −
                                                                −
                                                      −
                                                                        −
                                              − −T    − −T   T  T   − T  T
                                       = E ˜x ˜x   − ˜x ˜x  C L − ˜x η L
                                                                 T
                                                           − −T
                                                                    T
                                                                            − T
                                               − −T
                                         − LC˜x ˜x   + LC˜x ˜x  C L + LC˜x η L   T
                                                                     T
                                                              T
                                                           T
                                       = −Lη˜x −T  + Lη˜x −T C L + Lηη L T
                                                                         T
                                                                            T
                                                      T
                                                   T
                                                                                    T
                                                                      −
                                                −
                                       = P  −  − P C L − LCP  −  + LCP C L + LRL .         (25)
                                                                 +
                           Our objective is to pick L to minimize tr(P ). A necessary condition is
                                     ∂     +          T       T           T
                                                                       −
                                                           −
                                       tr(P )= −P C − P C +2LCP C +2LR =0
                                                   −
                                    ∂L
                                                          T
                                                                 −
                                         =⇒ 2L(R + CP C )=2P C      T
                                                       −
                                                      T
                                                                  T −1
                                                               −
                                         =⇒ L = P C (R + CP C )       .
                                                   −
   196   197   198   199   200   201   202   203   204   205   206