Page 202 - Innovations in Intelligent Machines
P. 202

194    R.W. Beard
                           Plugging back into Eq. (25) give
                                            T
                                                                        T
                                                                                    T −1
                                                        T −1
                                                     −
                             P +  = P  −  + P C (R + CP C )  CP  −  − P C (R + CP C )   CP  −
                                         −
                                                                     −
                                                                                 −
                                                     T −1
                                                                                T −1
                                         T
                                                                T
                                                  −
                                                                             −
                                  + P C (R + CP C )      (CP C + R)(R + CP C )       CP  −
                                      −
                                                             −
                                            T
                                                        T −1
                                                     −
                                = P  −  − P C (R + CP C )   CP  −
                                         −
                                                       T −1
                                           T
                                                    −
                                        −
                                =(I − P C (R + CP C )      C)P  −
                                            −
                                =(I − LC)P .
                           Extended Kalman Filter.
                           If instead of the linear state model given in (24), the system is nonlinear, i.e.,
                                                      ˙ x = f(x, u)+ Gξ                    (26)
                                                     y k = h(x k )+ η k ,
                           then the system matrices A and C required in the update of the error covari-
                           ance P are computed as
                                                             ∂f
                                                      A(x)=     (x)
                                                             ∂x
                                                             ∂h
                                                      C(x)=     (x).
                                                             ∂x
                           The extended Kalman filter (EKF) for continuous-discrete systems is given
                           by Algorithm 2.
                           Algorithm 2 Continuous-Discrete Extended Kalman Filter
                            1: Initialize: ˆx =0.
                            2: Pick an output sample rate T out which is much less than the sample rates of the
                              sensors.
                            3: At each sample time T out:
                            4: for i =1 to N do {Propagate the equations.}

                            5:  ˆ x =ˆx +  T out  f(ˆx, u)
                                         N
                            6:  A =  ∂f  (ˆx)
                                                      T       T
                                    ∂x
                            7:  P = P +  T out  AP + PA + GQG
                                          N
                            8: end for
                            9: if A measurement has been received from sensor i then {Measurement Update}
                           10:  C i =  ∂h i  (ˆx)
                                     ∂x
                                                  T −1
                                       T
                           11:  L i = PC i (R i + C iPC i )
                           12:  P =(I − L iC i)P
                           13:  ˆ x =ˆx + L i (y i − C i ˆx).
                           14: end if
   197   198   199   200   201   202   203   204   205   206   207