Page 205 - Innovations in Intelligent Machines
P. 205

State Estimation for Micro Air Vehicles  197
                                  150
                                  100
                             p  (m)
                              n                                                   actual
                                   50
                                                                                  estimated
                                    0
                                      0      2     4      6     8     10     12    14     16
                                  100
                             p  (m)
                              e
                                   50
                                                                                  actual
                                                                                  estimated
                                    0
                                      0      2     4      6     8     10     12    14     16
                                  200
                             χ (deg)
                                    0
                                                                                  actual
                                                                                  estimated
                                 - 200
                                      0      2     4      6     8     10     12    14     16
                                                             time (sec)
                           Fig. 11. Actual and estimated values of p n, p e,and χ using the continuous-discrete
                           extended Kalman filter

                           6.2 Position and Course Estimation
                           The objective in this section is to estimate p n , p e ,and χ using the GPS sensor.
                           From Eq. (3), the model for χ is given by
                                                           sin φ   cos φ
                                                      ˙
                                                  ˙ χ = ψ = q  + r     .
                                                           cos θ   cos θ
                           Using Eqs. (4) and (5) for the evolution of p n and p e results in the system
                           model
                                                       ⎛             ⎞
                                               ⎛   ⎞        V g cos χ
                                                 ˙ p N
                                                       ⎜             ⎟
                                               ⎝ ˙p E⎠ =  ⎜  V g sin χ  ⎟  + ξ p
                                                   ⎟
                                               ⎜
                                                       ⎝             ⎠
                                                 ˙ χ     q  sin φ  + r  cos φ
                                                          cos θ  cos θ

                                                     = f(x, u)+ ξ p ,
                                                               T
                                             T
                           where x =(p n ,p e ,χ) , u =(V g ,q,r,φ,θ) and ξ p ∼N(0,Q).
                              GPS returns measurements of p n , p e ,and χ directly. Therefore we will
                           assume the output model
                                                           ⎛   ⎞
                                                             p n
                                                    y GPS =  ⎝ p e  ⎠  + η p ,
                                                             χ
   200   201   202   203   204   205   206   207   208   209   210