Page 201 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 201


                            I   I  381.7    82.4 A
                          L   A
                 The starting kVA of the motor is
                                                
                         S start    3V   A   I    3 266 V 381.7 A     304.6 kVA
                 The locked rotor kVA/hp is

                                   304.6 kVA
                         kVA/hp                 4.06
                                      75 hp

                 Therefore this motor is Starting Code Letter D.
          6-29.  Plot the torque-speed characteristic of the motor in Problem 6-28.  What is the starting torque of this
                 motor?
                 SOLUTION  A MATLAB program to calculate the torque-speed characteristic of this motor is shown below:

                 % M-file: prob6_29.m
                 % M-file create a plot of the torque-speed curve of the
                 %   induction motor of Problem 6-28.

                 % First, initialize the values needed in this program.
                 r1 = 0.058;                 % Stator resistance
                 x1 = 0.320;                 % Stator reactance
                 r2 = 0.037;                 % Rotor resistance
                 x2 = 0.386;                 % Rotor reactance
                 xm = 9.24;                  % Magnetization branch reactance
                 v_phase = 460 / sqrt(3);    % Phase voltage
                 n_sync = 1800;              % Synchronous speed (r/min)
                 w_sync = 188.5;             % Synchronous speed (rad/s)

                 % Calculate the Thevenin voltage and impedance from Equations
                 % 6-41a and 6-43.
                 v_th = v_phase * ( xm / sqrt(r1^2 + (x1 + xm)^2) );
                 z_th = ((j*xm) * (r1 + j*x1)) / (r1 + j*(x1 + xm));
                 r_th = real(z_th);
                 x_th = imag(z_th);

                 % Now calculate the torque-speed characteristic for many
                 % slips between 0 and 1.  Note that the first slip value
                 % is set to 0.001 instead of exactly 0 to avoid divide-
                 % by-zero problems.
                 s = (0:0.05:50) / 50;        % Slip
                 s(1) = 0.001;
                 nm = (1 - s) * n_sync;       % Mechanical speed

                 % Calculate torque versus speed
                 for ii = 1:length(s)
                    t_ind(ii) = (3 * v_th^2 * r2 / s(ii)) / ...
                            (w_sync * ((r_th + r2/s(ii))^2 + (x_th + x2)^2) );
                 end

                 % Plot the torque-speed curve
                 figure(1);
                 plot(nm,t_ind,'b-','LineWidth',2.0);
                 xlabel('\bf\itn_{m}');

                                                           195
   196   197   198   199   200   201   202   203   204   205   206