Page 231 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 231

218                                            Solutions to the Exercises

                          Let then   ∈ R, ϕ ∈ C 0 ∞  (Ω) and

                                            v (x, y)= v (x, y)+  ϕ (x, y) e 3
                       where e 3 =(v x × v y ) / |v x × v y |.
                                                ©                 ª     ¡ ¢


                          We next consider ∂A = v (x, y):(x, y) ∈ Ω = v    Ω . Wehavetoevalu-

                       ate M (A ) and we start by computing
                                                                ¡
                                                                       ¡

                               v × v   y  =(v x +   (ϕ e 3 + ϕe 3x )) × v y +   ϕ e 3 + ϕe 3y  ¢¢
                                                   x
                                                                         y
                                x
                                       = v x × v y +   [ϕ (e 3x × v y + v x × e 3y )]
                                             £                    ¤    ¡ ¢
                                                                         2
                                           +  ϕ e 3 × v y + ϕ v x × e 3 + O
                                                          y
                                                x
                       (where O (t) stands for a function f so that |f (t) /t| is bounded in a neighbor-
                       hood of t =0)which leadsto
                       ­           ®    ­                ®
                        v ; v × v   =    v +  ϕe 3 ; v × v
                            x   y                 x   y
                                    = hv; v x × v y i +  ϕ he 3 ; v x × v y i +   hv; ϕ (e 3x × v y + v x × e 3y )i
                                          ­                      ®    ¡ ¢
                                                                        2
                                        +  v; ϕ e 3 × v y + ϕ v x × e 3 + O    .
                                              x          y
                       Observing that he 3 ; v x × v y i = |v x × v y | and returning to (7.29), we get after
                       integration by parts that (recalling that ϕ =0 on ∂Ω).
                                                ZZ


                          M (A ) − M (A 0 )=        ϕ {|v x × v y | + hv; e 3x × v y + v x × e 3y i
                                              3
                                                  Ω
                                                                           o
                                                                                      ¡ ¢
                                                                                        2
                                              − (hv; e 3 × v y i) − (hv; v x × e 3 i)  dxdy + O
                                                            x             y
                                                  ZZ
                                           =        ϕ {|v x × v y | − hv x ; e 3 × v y i
                                              3   Ω
                                                                     ¡ ¢
                                                                       2
                                              − hv y ; v x × e 3 i} dxdy + O    .
                       Since hv x ; e 3 × v y i = hv y ; v x × e 3 i = − |v x × v y |, we obtain that
                                                      ZZ
                                                                            ¡ ¢

                                   M (A ) − M (A 0 )=     ϕ |v x × v y | dxdy + O   2  .  (7.30)
                                                        Ω
                          (ii) We recall from (7.24) in Exercise 5.2.4 that we have
                                                    ZZ
                                                                            ¡ ¢

                             L (∂A ) − L (∂A 0 )= −2    ϕH |v x × v y | dxdy + O   2  .  (7.31)
                                                      Ω
                       Combining (7.30), (7.31), the minimality of A 0 and a Lagrange multiplier α,we
                       get
                                  ZZ
                                      (−2ϕH + αϕ) |v x × v y | dxdy =0, ∀ϕ ∈ C 0 ∞  (Ω) .
                                     Ω
                       The fundamental lemma of the calculus of variations (Theorem 1.24) implies
                       then that H = constant (since ∂A 0 is a regular surface we have |v x × v y | > 0).
   226   227   228   229   230   231   232   233   234   235   236