Page 236 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 236

BIBLIOGRAPHY                                                      223

                 [61] Hsiung C.C., A first course in differential geometry,Wiley,New York,
                     1981.
                 [62] Ioffe A.D. and Tihomirov V.M., Theory of extremal problems,North Hol-
                     land, Amsterdam, 1979.
                 [63] John F., Partial differential equations, Springer, Berlin, 1982.

                 [64] Kawohl B., Recent results on Newton’s problem of minimal resistance,
                     Nonlinear analysis and applications (Warsaw, 1994), Gakuto Internat. Ser.
                     Math. Sci. Appl., 7 (1996), 249—259.
                 [65] Kinderlherer D. and Stampacchia G., Introduction to variational inequal-
                     ities and their applications, Academic Press, New York, 1980.
                 [66] Ladyzhenskaya O.A. and Uraltseva N.N., Linear and quasilinear elliptic
                     equations, Academic Press, New York, 1968.

                 [67] Lebesgue H., Leçons sur l’intégration et la recherche des fonctions primi-
                     tives, Gauthier-Villars, Paris, 1928.

                 [68] Lions J.L. and Magenes E., Non-homogeneous boundary value problems
                     and applications I,II,III, Springer, Berlin, 1972.

                 [69] Lions P.L., Generalized solutions of Hamilton-Jacobi equations,Research
                     Notes in Math. 69, Pitman, London, 1982.

                 [70] Marcellini P., Non convex integrals of the calculus of variations, in: Meth-
                     ods of nonconvex analysis, ed. Cellina A., Lecture Notes in Math. 1446,
                     Springer, Berlin, 1990, 16-57.
                 [71] Marcellini P. and Sbordone C., Semicontinuity problems in the calculus of
                     variations, Nonlinear Anal., Theory, Methods and Applications 4 (1980),
                     241-257.

                 [72] Mawhin J. and Willem M., Critical point theory and Hamiltonian systems,
                     Springer, Berlin, 1989.

                 [73] Monna A.F., Dirichlet’s principle: a mathematical comedy of errors and
                     its influence on the development of analysis, Oosthoeck, Utrecht, 1975.

                 [74] Morrey C.B., Quasiconvexity and the lower semicontinuity of multiple in-
                     tegrals, Pacific J. Math. 2 (1952), 25-53.
                 [75] Morrey C.B., Multiple integrals in the calculus of variations,Springer,
                     Berlin, 1966.
   231   232   233   234   235   236   237   238   239   240   241