Page 234 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 234

BIBLIOGRAPHY                                                      221

                 [29] Dacorogna B., Quasiconvexity and relaxation of nonconvex variational
                     problems, J. of Funct. Anal. 46 (1982), 102-118.
                 [30] Dacorogna B., Weak continuity and weak lower semicontinuity of nonlinear
                     functionals, Springer, Berlin, 1982.

                 [31] Dacorogna B., Direct methods in the calculus of variations,Springer,
                     Berlin, 1989.

                 [32] Dacorogna B. and Marcellini P., A counterexample in the vectorial calculus
                     of variations, in Material instabilities in continuum mechanics,ed. Ball
                     J.M., Oxford Sci. Publ., Oxford, 1988, 77-83.
                 [33] Dacorogna B. and Marcellini P., Implicit partial differential equations,
                     Birkhäuser, Boston, 1999.









                 [34] Dacorogna B. and Murat F., On the optimality of certain Sobolev ex-







                     ponents for the weak continuity of determinants, J. of Funct. Anal. 105
                     . (1992), 42-62.
                 [35] Dacorogna B. and Pfister C.E., Wulff theorem and best constant in Sobolev
                     inequality, J. Math. Pures Appl. 71 (1992), 97-118.
                 [36] Dal Maso G., An introduction to Γ-convergence, Progress in Nonlinear
                     Differential Equations and their Appl., 8, Birkhäuser, Boston, 1993.
                 [37] De Barra G., Measure theory and integration, Wiley, New York, 1981.
                 [38] De Giorgi E., Teoremi di semicontinuità nel calcolo delle variazioni,Isti-
                     tuto Nazionale di Alta Matematica, Roma, 1968-1969.
                 [39] Dierkes U., Hildebrandt S., Küster A. and Wohlrab O., Minimal surfaces
                     Iand II, Springer, Berlin, 1992.
                 [40] Ekeland I., Convexity methods in Hamiltonian mechanics, Springer, Berlin,
                     1990.
                 [41] Ekeland I. and Témam R., Analyse convexe et problèmes variationnels,
                     Dunod, Paris, 1974.

                 [42] Evans L.C., Weak convergence methods for nonlinear partial differential
                     equations, Amer. Math. Soc., Providence, 1990.

                 [43] Evans L.C., Partial differential equations, Amer. Math. Soc., Providence,
                     1998.
   229   230   231   232   233   234   235   236   237   238   239