Page 234 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 234
BIBLIOGRAPHY 221
[29] Dacorogna B., Quasiconvexity and relaxation of nonconvex variational
problems, J. of Funct. Anal. 46 (1982), 102-118.
[30] Dacorogna B., Weak continuity and weak lower semicontinuity of nonlinear
functionals, Springer, Berlin, 1982.
[31] Dacorogna B., Direct methods in the calculus of variations,Springer,
Berlin, 1989.
[32] Dacorogna B. and Marcellini P., A counterexample in the vectorial calculus
of variations, in Material instabilities in continuum mechanics,ed. Ball
J.M., Oxford Sci. Publ., Oxford, 1988, 77-83.
[33] Dacorogna B. and Marcellini P., Implicit partial differential equations,
Birkhäuser, Boston, 1999.
[34] Dacorogna B. and Murat F., On the optimality of certain Sobolev ex-
ponents for the weak continuity of determinants, J. of Funct. Anal. 105
. (1992), 42-62.
[35] Dacorogna B. and Pfister C.E., Wulff theorem and best constant in Sobolev
inequality, J. Math. Pures Appl. 71 (1992), 97-118.
[36] Dal Maso G., An introduction to Γ-convergence, Progress in Nonlinear
Differential Equations and their Appl., 8, Birkhäuser, Boston, 1993.
[37] De Barra G., Measure theory and integration, Wiley, New York, 1981.
[38] De Giorgi E., Teoremi di semicontinuità nel calcolo delle variazioni,Isti-
tuto Nazionale di Alta Matematica, Roma, 1968-1969.
[39] Dierkes U., Hildebrandt S., Küster A. and Wohlrab O., Minimal surfaces
Iand II, Springer, Berlin, 1992.
[40] Ekeland I., Convexity methods in Hamiltonian mechanics, Springer, Berlin,
1990.
[41] Ekeland I. and Témam R., Analyse convexe et problèmes variationnels,
Dunod, Paris, 1974.
[42] Evans L.C., Weak convergence methods for nonlinear partial differential
equations, Amer. Math. Soc., Providence, 1990.
[43] Evans L.C., Partial differential equations, Amer. Math. Soc., Providence,
1998.