Page 235 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 235

222                                                  BIBLIOGRAPHY

                        [44] Evans L.C. and Gariepy R.F., Measure theory and fine properties of func-
                            tions, Studies in Advanced Math., CRC Press, Boca Raton, 1992.
                        [45] Federer H., Geometric measure theory, Springer, Berlin, 1969.

                        [46] Gelfand I.M. and Fomin S.V., Calculus of variations, Prentice-Hall, En-
                            glewood, 1963.
                        [47] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear
                            elliptic systems, Princeton University Press, Princeton, 1983.
                        [48] Giaquinta M. and Hildebrandt S., Calculus of variations I and II,Springer,
                            Berlin, 1996.
                        [49] Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of
                            second order, Springer, Berlin, 1977.
                        [50] Giusti E., Minimal surfaces and functions of bounded variations,
                            Birkhäuser, Boston, 1984.
                        [51] Giusti E., Metodi diretti del calcolo delle variazioni, Unione Matematica
                            Italiana, Bologna, 1994.
                        [52] Goldstine H.H., A history of the calculus of variations from the 17th to the
                            19th century, Springer, Berlin, 1980.
                        [53] Hadamard J., Sur quelques questions du calcul des variations, Bulletin
                            Société Math. de France 33 (1905), 73-80.
                        [54] Hadamard J., Leçons sur le calcul des variations, Hermann, Paris, 1910.
                        [55] Hardy G.H., Littlewood J.E. and Polya G., Inequalities, Cambridge Uni-
                            versity Press, Cambridge, 1961.
                        [56] Hestenes M.R., Calculus of variations and optimal control theory, Wiley,
                            New York, 1966.
                        [57] Hewitt E. and Stromberg K., Real and abstract analysis, Springer, Berlin,
                            1965.
                        [58] Hildebrandt S. and Tromba A., Mathematics and optimal form, Scientific
                            American Library, New York, 1984.
                        [59] Hildebrandt S. and Von der Mosel H., Plateau’s problem for parametric
                            double integrals: Existence and regularity in the interior, Commun. Pure
                            Appl. Math. 56 (2003), 926–955.

                        [60] Hörmander L., Notions of convexity, Birkhäuser, Boston, 1994.
   230   231   232   233   234   235   236   237   238   239   240