Page 235 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 235
222 BIBLIOGRAPHY
[44] Evans L.C. and Gariepy R.F., Measure theory and fine properties of func-
tions, Studies in Advanced Math., CRC Press, Boca Raton, 1992.
[45] Federer H., Geometric measure theory, Springer, Berlin, 1969.
[46] Gelfand I.M. and Fomin S.V., Calculus of variations, Prentice-Hall, En-
glewood, 1963.
[47] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear
elliptic systems, Princeton University Press, Princeton, 1983.
[48] Giaquinta M. and Hildebrandt S., Calculus of variations I and II,Springer,
Berlin, 1996.
[49] Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of
second order, Springer, Berlin, 1977.
[50] Giusti E., Minimal surfaces and functions of bounded variations,
Birkhäuser, Boston, 1984.
[51] Giusti E., Metodi diretti del calcolo delle variazioni, Unione Matematica
Italiana, Bologna, 1994.
[52] Goldstine H.H., A history of the calculus of variations from the 17th to the
19th century, Springer, Berlin, 1980.
[53] Hadamard J., Sur quelques questions du calcul des variations, Bulletin
Société Math. de France 33 (1905), 73-80.
[54] Hadamard J., Leçons sur le calcul des variations, Hermann, Paris, 1910.
[55] Hardy G.H., Littlewood J.E. and Polya G., Inequalities, Cambridge Uni-
versity Press, Cambridge, 1961.
[56] Hestenes M.R., Calculus of variations and optimal control theory, Wiley,
New York, 1966.
[57] Hewitt E. and Stromberg K., Real and abstract analysis, Springer, Berlin,
1965.
[58] Hildebrandt S. and Tromba A., Mathematics and optimal form, Scientific
American Library, New York, 1984.
[59] Hildebrandt S. and Von der Mosel H., Plateau’s problem for parametric
double integrals: Existence and regularity in the interior, Commun. Pure
Appl. Math. 56 (2003), 926–955.
[60] Hörmander L., Notions of convexity, Birkhäuser, Boston, 1994.