Page 237 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 237
224 BIBLIOGRAPHY
[76] Morse M., The calculus of variations in the large, Amer. Math. Soc., New
York, 1934.
[77] Necas J., Lesméthodesdirectes enthéorie deséquations elliptiques,Mas-
son, Paris, 1967.
[78] Nitsche J.C., Lecture on minimal surfaces, Cambridge University Press,
Cambridge, 1989.
1
[79] Ornstein D., A non-inequality for differential operators in the L norm,
Arch. Rational Mech. Anal. 11 (1962), 40-49.
[80] Osserman R., A survey on minimal surfaces, Van Nostrand, New York,
1969.
[81] Osserman R., The isoperimetric inequality, Bull. Amer. Math. Soc. 84
(1978), 1182-1238.
[82] Pars L., An introduction to the calculus of variations, Heinemann, London,
1962.
[83] Payne L., Isoperimetric inequalities and their applications, SIAM Rev. 9
(1967), 453-488.
[84] Pisier G., Thevolumeofconvexbodiesand Banach spacegeometry,Cam-
bridge University Press, Cambridge, 1989.
[85] PolyaG. and SzegöG., Isoperimetric inequalities in mathematical physics,
Princeton University Press, Princeton, 1951.
[86] Porter T.I., A history of the classical isoperimetric problem, in Contribu-
tions to the calculus of variations (1931-1932), edited by Bliss G.A. and
Graves L.M., University of Chicago Press, Chicago, 1933.
[87] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton,
1970.
[88] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1966.
[89] Rudin W., Functional analysis, McGraw-Hill, New York, 1973.
[90] Rund H., The Hamilton-Jacobi theory in the calculus of variations,Van
Nostrand, Princeton, 1966.
[91] Struwe M., Plateau’s problem and the calculus of variations,Princeton
University Press, Princeton, 1988.