Page 233 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 233

220                                                  BIBLIOGRAPHY

                        [14] Brézis H., Analyse fonctionnelle, théorie et applications,Masson,Paris,
                            1983.
                        [15] Buttazzo G., Semicontinuity, relaxation and integral represention in the
                            calculus of variations, Pitman, Longman, London, 1989.
                        [16] Buttazzo G., Ferone V. and Kawohl B., Minimum problems over sets of
                            concave functions and related questions, Math. Nachrichten 173 (1995),
                            71-89.

                        [17] Buttazzo G., Giaquinta M. and Hildebrandt S., One dimensional varia-
                            tional problems, Oxford University Press, Oxford, 1998.

                        [18] Buttazzo G. and Kawohl B., On Newton’s problem of minimal resistance,
                            Math. Intell. 15 (1992), 7-12.
                        [19] Carathéodory C., Calculus of variations and partial differential equations
                            of the first order, Holden Day, San Francisco, 1965.
                        [20] Cesari L., Optimization - Theory and applications, Springer, New York,
                            1983.
                        [21] Chern S.S., An elementary proof of the existence of isothermal parameters
                            on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782.
                        [22] Ciarlet P., Mathematical elasticity, Volume 1, Three dimensional elasticity,
                            North Holland, Amsterdam, 1988.
                        [23] Clarke F.H., Optimization and nonsmooth analysis, Wiley, New York,
                            1983.
                        [24] Courant R., Dirichlet’s principle, conformal mapping and minimal sur-
                            faces, Interscience, New York, 1950.
                        [25] Courant R., Calculus of variations, Courant Institute Publications, New
                            York, 1962.
                        [26] Courant R. and Hilbert D., Methods of mathematical physics,Wiley,New
                            York, 1966.
                        [27] Crandall M.G., Ishii H. and Lions P.L., User’s guide to viscosity solutions
                            of second order partial differential equations, Bull. Amer. Math. Soc. 27
                            (1992), 1-67.
                        [28] Croce G. and Dacorogna B., On a generalized Wirtinger inequality, Disc.
                            and Cont. Dyn. Syst. Ser. A, 9 (2003), 1329-1341.
   228   229   230   231   232   233   234   235   236   237   238