Page 232 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 232
Bibliography
[1] Adams R.A., Sobolev spaces, Academic Press, New York, 1975.
[2] Akhiezer N.I., The calculus of variations, Blaisdell, New York, 1962.
[3] Alibert J.J. and Dacorogna B., An example of a quasiconvex function
that is not polyconvex in two dimensions, Arch. Rational Mech. Anal. 117
(1992), 155-166.
[4] Almgren F.J., Plateau’s problem. An invitation to varifold geometry,W.A.
Benjamin, New York, 1966.
[5] Ambrosio L., Fusco N. and Pallara D., Functions of bounded variation and
free discontinuity problems, Oxford University Press, Oxford, 2000.
[6] Antman S.S., Nonlinear problems of elasticity, Springer, Berlin, 1995.
[7] Ball J.M., Convexity conditions and existence theorems in non linear elas-
ticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
[8] Ball J.M. and Mizel V., One dimensional variational problems whose min-
imizers do not satisfy the Euler-Lagrange equations, Arch. Rational Mech.
Anal. 90 (1985), 325-388.
[9] Bandle C., Isoperimetric inequalities and applications, Pitman, London,
1980.
[10] Berger M., Geometry I and II, Springer, Berlin, 1987.
[11] Blaschke W., Kreis und Kugel, Chelsea, New York, 1949.
[12] Bliss G., Lectures on the calculus of variations, University of Chicago
Press, Chicago, 1951.
[13] Bolza O., Lectures on the calculus of variations, Chelsea Publication, New
York, 1946.
219