Page 232 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 232

Bibliography






                  [1] Adams R.A., Sobolev spaces, Academic Press, New York, 1975.
                  [2] Akhiezer N.I., The calculus of variations, Blaisdell, New York, 1962.

                  [3] Alibert J.J. and Dacorogna B., An example of a quasiconvex function
                     that is not polyconvex in two dimensions, Arch. Rational Mech. Anal. 117
                     (1992), 155-166.
                  [4] Almgren F.J., Plateau’s problem. An invitation to varifold geometry,W.A.
                     Benjamin, New York, 1966.
                  [5] Ambrosio L., Fusco N. and Pallara D., Functions of bounded variation and
                     free discontinuity problems, Oxford University Press, Oxford, 2000.
                  [6] Antman S.S., Nonlinear problems of elasticity, Springer, Berlin, 1995.

                  [7] Ball J.M., Convexity conditions and existence theorems in non linear elas-
                     ticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.

                  [8] Ball J.M. and Mizel V., One dimensional variational problems whose min-
                     imizers do not satisfy the Euler-Lagrange equations, Arch. Rational Mech.
                     Anal. 90 (1985), 325-388.
                  [9] Bandle C., Isoperimetric inequalities and applications, Pitman, London,
                     1980.
                 [10] Berger M., Geometry I and II, Springer, Berlin, 1987.

                 [11] Blaschke W., Kreis und Kugel, Chelsea, New York, 1949.
                 [12] Bliss G., Lectures on the calculus of variations, University of Chicago
                     Press, Chicago, 1951.
                 [13] Bolza O., Lectures on the calculus of variations, Chelsea Publication, New
                     York, 1946.

                                                 219
   227   228   229   230   231   232   233   234   235   236   237