Page 204 - Introduction to Autonomous Mobile Robots
P. 204

189
                           Mobile Robot Localization
                                Σ p'  =  ∇ f Σ ⋅  ∇ f +  ∇ ∆  rl  f Σ ⋅  ∇ ∆  rl  f  T        (5.9)
                                         ⋅
                                                 T
                                                        ⋅
                                                          ∆
                                       p
                                               p
                                           p
                             The covariance matrix  Σ p  is, of course, always given by the  Σ p'   of the previous step,
                           and can thus be calculated after specifying an initial value (e.g., 0).
                             Using equation (5.7) we can develop the two Jacobians, F =  ∇ f  and F  =  ∇  : f
                                                                           p    p      ∆      ∆
                                                                                        rl    rl
                                                                                ⁄
                                                                10 ∆ssin ( θ +  ∆θ 2)
                                                                    –
                                               T     f ∂ ∂ ∂ f
                                                        f
                                F =  ∇ f =  ∇ f() =  ----- ----- ------ =  (  ∆θ 2)          (5.10)
                                                                                ⁄
                                 p    p     p                   01 ∆scos  θ +
                                                     x ∂ ∂ y θ∂
                                                                00         1
                                                                
                                       1      ∆θ   ∆s     ∆θ 1        ∆θ   ∆s     ∆θ 
                                       ---cos  θ +  ------- –  ------sin  θ +  ------- ---cos  θ +  ------- +  ------sin  θ +  -------
                                                2 
                                                              2 
                                                                                        2 
                                                                          2 
                                       2            2b           2             2b
                                F ∆  =  1     ∆θ   ∆s     ∆θ  1      ∆θ   ∆s    ∆θ    (5.11)
                                                                                       -------
                                                             -------
                                                                  -
                                                                          ------- –
                                               ------- +
                                                                              ------ cos
                                  rl   ---sin  θ +  2   ------cos  θ +  2   --sin  θ +   θ +  2 
                                       2            2b            2       2  2b
                                                   1                          1
                                                   ---                       – ---
                                                   b                          b
                             The details for arriving at equation (5.11) are
                                                f ∂
                                                    f ∂
                                F ∆  =  ∇ ∆  f =  ----------- ---------- =  …                (5.12)
                                  rl    rl    ∂ ∆s ∂ ∆s
                                                 r   l
                                 ∂ ∆s     ∆θ   ∆s     ∆θ  ∆θ∂  ∂ ∆s    ∆θ   ∆s    ∆θ  ∆θ∂
                                                                                  –
                                                  –
                                         +
                                                                          +
                                 -------------cos  θ ------ +  ------ sin  θ ------ ------------- ------------cos  θ ------ +  ------ sin  θ ------ ------------
                                                        +
                                                                                        +
                                 ∂ ∆s     2    2       2   ∂ ∆s ∂ ∆s    2   2      2  ∂ ∆s
                                    r                          r    l                           l
                                  ∂ ∆s    ∆θ   ∆s     ∆θ  ∆θ∂  ∂ ∆s    ∆θ   ∆s    ∆θ  ∆θ∂
                                                       +
                                                                          +
                                                                                       +
                                          +
                                 -------------sin  θ ------ +  ------cos  θ ------ ------------- ------------sin  θ ------ +  ------cos  θ ------ ------------
                                 ∂ ∆s       2   2       2  ∂ ∆s  ∂ ∆s     2   2       2   ∂ ∆s
                                    r                          r     l                         l
                                               ∂ ∆θ                            ∂ ∆θ
                                               -------------                   ------------
                                               ∂ ∆s                            ∂ ∆s
                                                  r                               l
                                                                                             (5.13)
                           and with
                                     ∆s +  ∆s l         ∆s ∆– s l
                                                          r
                                       r
                                ∆s =  ----------------------     ;    ∆θ =  -------------------   (5.14)
                                        2                 b
   199   200   201   202   203   204   205   206   207   208   209