Page 246 - Introduction to Autonomous Mobile Robots
P. 246

Mobile Robot Localization


                             fq()                                   2                          231
                                                        1      ( q – µ) 
                                                fq() =  -------------- exp  –   ------------------- 
                                                      σ 2π      2σ 2  















                                                                        q
                                       q 2  q ˆ  q 1

                           Figure 5.26
                           Fusing probability density of two estimates [106].


                           or, in the final form that is used in Kalman filter implementation,


                                x ˆ k +  1  =  x ˆ +  K k + 1  z (  k +  1  – x ˆ )          (5.38)
                                        k
                                                      k
                           where


                                         σ 2 k   2    2     2    2
                                K k + 1  =  ------------------ 2    ;  σ =  σ 1     ;   σ =  σ 2   (5.39)
                                                            z
                                                 k
                                        2
                                       σ + σ z
                                        k
                             Equation (5.38) tells us, that the best estimate  x ˆ   of the state x   at time k +  1   is
                                                                   k +  1         k +  1
                           equal to the best prediction of the value x ˆ k   before the new measurement z k +  1   is taken, plus
                           a correction term of an optimal weighting value times the difference between z k +  1   and the
                           best prediction  x ˆ   at time  k +  1  . The updated variance of the state  x ˆ   is given using
                                        k                                          k +  1
                           equation (5.36)
                                        2
                                σ 2  =  σ –  K  σ 2                                          (5.40)
                                 k +  1  k  k + 1  k
   241   242   243   244   245   246   247   248   249   250   251