Page 256 - Introduction to Autonomous Mobile Robots
P. 256

241
                           Mobile Robot Localization
                           3. Measurement prediction. Based on the stored map and the predicted robot position
                           p ˆ k k)  , the measurement predictions of expected features z ti   are generated (figure 5.31).
                            (
                                                                          ,
                           To reduce the required calculation power, there is often an additional step that first selects
                           the possible features, in this case lines, from the whole set of features in the map. These
                           lines are stored in the map and specified in the world coordinate system  W{}  . Therefore
                           they need to be transformed to the robot frame  R{}  :


                                       W             R
                                W        α ti  R      α ti
                                                        ,
                                          ,
                                  z  =       →  z  =                                         (5.63)
                                                 ,
                                   ,
                                  ti             ti
                                         r             r
                                                        ,
                                          ,
                                          ti           ti
                             According to figure (5.31), the transformation is given by
                                         R  α
                                             ,
                                                   (
                                 (
                                                        (
                                z ˆ k +  1) =  ti  =  h z ,  p ˆ k +  1 k))
                                                     ,
                                                     ti
                                 i
                                                  i
                                           r ti
                                            ,
                                                                ˆ
                                                                 (
                                                         W α –  W θ k +  1 k)
                                 (
                                                            ,
                                z ˆ k +  1) =               ti                               (5.64)
                                 i
                                                   (
                                                                       (
                                           W     W            W      W            W
                                            r –  (  x ˆ k +  1 k) cos (  α ) +  y ˆ k +  1 k) sin (  α ))
                                                                                     ,
                                             ,
                                                                 ,
                                             ti                  ti                 ti
                           and its Jacobian  h∇  i   by
                                                                   (
                                                                  θ k + 1)
                                                                                          (
                                                                                         xk +  1)
                                                                     R
                                                                      α        (
                                                                                          (
                                                                       i      pk +  1) =  yk +  1)
                                                                                          (
                                                                                         θ k +  1))
                                                                {}       R
                                                                 R
                                                                          r
                                                                           i
                               y                                       W
                                                                        r
                                                                         i
                                                  W
                                                   α
                                                    i
                           {}           x
                            W
                           Figure 5.31
                           Representation of the target position in the world coordinate frame  W{}   and robot coordinate frame
                           {}  .
                            R
   251   252   253   254   255   256   257   258   259   260   261