Page 153 - Introduction to Computational Fluid Dynamics
P. 153

P1: IWV
                                                                                                12:28
                                                                                   May 20, 2005
                                        0 521 85326 5
            0521853265c05
                           CB908/Date
                     132
                            and, using Equation 5.91,            2D CONVECTION – CARTESIAN GRIDS
                                                                                  2
                                                1  	  y P     τ w  	  y P  ∂u 1  u u 1P
                                                                                  τ
                                            P =          dy =              dy =                (5.98)
                                                y P  0        ρ y P  0  ∂y        y P
                            or, using Equations 5.90 and 5.93,
                                                            3/4 3/2
                                                          C µ e
                                                                        +
                                                       P =      P  ln(Ey ).                    (5.99)
                                                                        P
                                                            κ y P
                            It is now easy to effect the boundary condition via
                                                                     2
                                                                µ eff u  V P
                                                                     1P
                                                    Su e = Su e +     2     ,                 (5.100)
                                                                     y
                                                                      P
                                                              3/4 1/2
                                                           ρ C µ e P
                                                                           +
                                               Sp e = Sp e +         ln(Ey ) V P .            (5.101)
                                                                           P
                                                              κ y P
                              =
                            To evaluate   P , we combine Equations 5.91 and 5.97 so that
                                                           τ w ∂u 1  2  ∂u 1
                                                       P =        = u τ   .                   (5.102)
                                                           ρ ∂y        ∂y
                            But, from Equation 5.86, ∂u 1 /∂y = u τ /(κ y). Therefore,
                                                                      e
                                                            u 3   C 3/4 3/2
                                                        P =  τ  =      P  .                   (5.103)
                                                           κ y P    κ y P
                            To effect this condition, we set

                                                          30
                                                                            30
                                                  Su   = 10   P ,   Sp   = 10 .               (5.104)
                              = T
                            In this case, AS = 
 eff  x 1 /y P , where 
 eff = k eff /C p . Again, we set AS = 0 and
                            absorb the boundary condition via an augmented source. Thus

                                                      
 eff  x 1                q w
                                         Su T = Su T +        (T b − T P ) = Su T +   x 1 .   (5.105)
                                                         y P                    C p
                            Substituting for (T b − T P ) from Equation 5.87, it follows that

                                                      
 eff      ρ u τ
                                                          =               .                   (5.106)
                                                      y P   Pr t (u +  + PF)
                                                                 1P
                               Thus, if q w is specified, we set
                                                         q w
                                            Su T = Su T +    x 1 ,    Sp T = Sp T + 0,        (5.107)
                                                         C p
   148   149   150   151   152   153   154   155   156   157   158