Page 159 - Introduction to Computational Fluid Dynamics
P. 159

P1: IWV
                                                                                                12:28
                                                                                   May 20, 2005
                                        0 521 85326 5
                           CB908/Date
            0521853265c05
                     138
                            Table 5.1: Porous medium – Problem 2.  2D CONVECTION – CARTESIAN GRIDS
                            l    x/L    0.0         0.25         0.50          0.75        1.0
                             0          0.000E+00   0.000E+00    0.000E+00     0.000E+00   0.000E+00
                             1          0.266E+01   0.266E+01    0.106E−02     0.284E−06   0.284E−06
                             2          0.737E+00   0.737E+00    0.705E+00     0.146E+01   0.146E+01
                             3          0.114E+01   0.114E+01    0.913E+00     0.919E+00   0.919E+00
                             4          0.982E+00   0.982E+00    0.974E+00     0.103E+01   0.103E+01
                             5          0.101E+01   0.101E+01    0.992E+00     0.992E+00   0.992E+00
                             6   U      0.999E+00   0.999E+00    0.998E+00     0.100E+01   0.100E+01
                             7          0.100E+01   0.100E+01    0.999E+00     0.999E+00   0.999E+00
                             8          0.100E+01   0.100E+01    0.100E+01     0.100E+01   0.100E+01
                             9          0.100E+01   0.100E+01    0.100E+01     0.100E+01   0.100E+01
                            10          0.100E+01   0.100E+01    0.100E+01     0.100E+01   0.100E+01
                            11          0.100E+01   0.100E+01    0.100E+01     0.100E+01   0.100E+01
                            12          0.100E+01   0.100E+01    0.100E+01     0.100E+01   0.100E+01
                             0          0.400E+06   0.000E+00    0.000E+00     0.000E+00   0.000E+00
                             1          0.400E+06   0.295E+06    0.283E+06     0.155E+06   0.000E+00
                             2          0.400E+06   0.266E+06    0.192E+06     0.837E+05   0.000E+00
                             3          0.400E+06   0.294E+06    0.211E+06     0.993E+05   0.000E+00
                             4          0.400E+06   0.294E+06    0.202E+06     0.958E+05   0.000E+00
                             5          0.400E+06   0.298E+06    0.202E+06     0.982E+05   0.000E+00
                             6   P      0.400E+06   0.299E+06    0.201E+06     0.987E+05   0.000E+00
                             7          0.400E+06   0.299E+06    0.201E+06     0.993E+05   0.000E+00
                             8          0.400E+06   0.300E+06    0.200E+06     0.996E+05   0.000E+00
                             9          0.400E+06   0.300E+06    0.200E+06     0.998E+05   0.000E+00
                            10          0.400E+06   0.300E+06    0.200E+06     0.999E+05   0.000E+00
                            11          0.400E+06   0.300E+06    0.200E+06     0.999E+05   0.000E+00
                            12          0.400E+06   0.300E+06    0.200E+06     0.100E+06   0.000E+00
                            12   p /p   0.000E+00   0.114E−03   −0.150E−03     0.341E−03   0.000E+00

                                  m

                            12   p /p   0.000E+00 −0.963E−04     0.188E−03   −0.288E−03    0.000E+00
                                  sm

                            solution given here, but velocity u = 0 at all nodes. In Problem 2, p(1) = 4 × 10 5
                            and p(IN ) = 0, but p = 0 at all interior nodes of the domain. Again u = 0at
                            all nodes. Thus, in both problems, the guessed velocity is zero and the boundary

                            pressures are held fixed so that p (1) = p (IN) = 0. Relaxation parameters are

                            taken as α = β = 1.

                               For Problem 1, by solving for u and p , the exact solutions (not shown here)
                            for p and u are obtained in just one iteration although the initial guess for u was
                            zero. This is because the initial guess for pressure was itself the exact solution and,
                            therefore, required no correction.
                               Table 5.1 shows evolutions with iteration number l for Problem 2. Notice that
                            because of the poor initial guess for pressure, the exact velocity solution is obtained
                            in eight iterations whereas the correct pressure prediction requires twelve iterations.
   154   155   156   157   158   159   160   161   162   163   164