Page 191 - MATLAB an introduction with applications
P. 191

176 ———  MATLAB: An Introduction with Applications

                   Example E3.24: Find the transfer function for the following system using MATLAB.

                                                 
                                                   x

                                 x     0  1  0    0   0 
                                                    1
                                  1
                                      
                                  =−  5 − 2  0     3 − 1 u
                                                             
                                                      +
                                 x
                                                   x
                                                      
                                  2
                                                    2
                                 x 
                                                 

                                                   x
                                       0  2  − 6    5  0  
                                                  
                                                    3
                                  3
                                                x 
                                                1
                                       10 0 
                                   y =         x
                                        001  
                                                2
                                             
                                                x 
                                               
                                                3
                   Solution:
                   The transfer function matrix is given by
                                    ()Gs =  [ C sI −  ] A  − 1 B
                                        0  1  0       0   0     100
                                      
                                   A =− 5 − 2  0    B  =   3 − 1   C  =     
                   where                                         001  
                                         0  2  − 6    5   0  
                                                s   − 1  0   0  0 
                                       100                    
                   Hence            ()Gs =      5 s +  2  0  3 − 1
                                       001                    
                                                            
                                                0   − 2  s + 6 5   0  
                                                             
                   >> % MATLAB Program
                   >> syms s
                   >> C=[1 0 0;0 0 1];
                   >> M=[s –1 0;5 s +2 0; 0 –2 s+6];
                   >> B=[0 0;3 –1;5 0];
                   >> C*inv(M)*B
                   ans =
                       [3/(s^2+2*s+5), –1/(s^2+2*s+5)]
                       [6*s/(s^3+8*s^2+17*s+30)+5/(s+6),  –2*s/(s^3+8*s^2+17*s+30)]
                   Example E3.25: Determine the transfer function G(s) = Y(s)/R(s), for the following system representation in
                   state space form.
                                       0  3  7 0     0 
                                       0  0  1 0    
                                                       5

                                  x =              x +   r
                                       0  0  0 1     7 
                                                    
                                                       2 
                                      −    5 − 6 9 5   
                                 y = [1 3 6 5] x





                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   186   187   188   189   190   191   192   193   194   195   196