Page 220 - MATLAB an introduction with applications
P. 220

Numerical Methods ———  205


                    4.8  JACOBI METHOD

                   This is an iterative technique solving with an assumed solution vector and successive refinement by iteration.
                   The system of equations for consideration is
                                a x  + a x  + a x  … + a x  = b 1
                                 11 1
                                                       1n n
                                              13 3
                                       12 2
                                a x  + a x  + a x  … + a x  = b 2
                                                       2n n
                                       22 2
                                              23 3
                                 21 1
                                …        …      …      …
                                …        …      …      …
                                a x  + a x  + a x  … + a x  = b i
                                             i3 3
                                       i2 2
                                                      in n
                                 i1 1
                                …        …      …      …
                                a x  + a x  + a x  … + a x  = b n                                    ...(4.8)
                                       n2 2
                                                       nn n
                                 n1 1
                                              n3 3
                   Rewriting the above equations
                                x  = (b  – a x  – a x  – … – a x )/a 11
                                 1
                                                13 3
                                                           1n n
                                      1
                                          12 2
                                x  = (b  – a x  – a x  – … – a x )/a 22
                                      2
                                 2
                                                           2n n
                                          21 1
                                                23 3
                                …        …      …      …
                                                                 x … a x )/a
                                x  = (b  – a x  – a x  … a ii–1 i–1  – a ii+1 i+1  in n  ii
                                                        n
                                         i1 i
                                     i
                                               i2 2
                                 i
                                …        …      …      …
                                x  = (b  – a x  – a x  … a nn–1 n–1 )/a nn                           ...(4.9)
                                                          x
                                                n2 2
                                          n1 1
                                      n
                                 n
                   This procedure is valid only if all the diagonal elements are non zero. The equations are to be rearranged
                   suitably to avoid the non zero elements in the main diagonal.
                                               r
                       Substituting the values of  x  any stage in the iterative process on the right hand side of equations
                                              i
                   (4.9) gives the values to the next stage, i.e.,  x i r+ 1 . In other words, the scheme is given by the system of
                   equations (4.10) with a superscript r on the right side and a superscript r + 1 on the left hand side. Rewriting
                   the equations,
                                                   r
                                             r
                                                      ... ax
                                x 1 r+ 1  =  (b − ax − a x − −  1nn r  )/ a 11
                                       1
                                                 13 3
                                          12 2
                                             r
                                                    r
                                x r+ 1  =  (b − a x − a x − −  2nn r )/ a 22
                                                      ... a x
                                                 23 3
                                           21 1
                                       2
                                 2
                                …        …      …      …
                                             r
                                                           r
                                                                   r
                                                     −
                                                                  n
                                x i r+ 1  =  (b − a x −  a x r ... a ii− 1 i− 1 −  a ii+ 1 i+ 1 ...a x r  ) / a ii
                                                          x
                                                                       in n
                                                i
                                           1 i
                                             i
                                       i
                                                 2 2
                                …        …      …      …
                                …        …      …      …
                                                             r
                                             r
                                                   r
                                                            x
                                x r+ 1  =  (b − a x − a x − ... a  , n n− 1 n− 1 )/ a nn            ...(4.10)
                                       n
                                 n
                                           n
                                                 n
                                                  2 2
                                           11
                                  1
                                     2
                                0
                   The sequence x , x , x , ... generated by the equations of (4.10) gives a sequence which converges to the
                   solutions vector x which satisfies the set of equations given in Eq.(4.8), i.e., [A]{x} = {b}.
                   Equation (4.10) in the matrix form is as follows
                                x r + 1  = {V} + [B]{x} r                                           ...(4.11)
   215   216   217   218   219   220   221   222   223   224   225