Page 225 - MATLAB an introduction with applications
P. 225

210 ———  MATLAB: An Introduction with Applications


                                    A −  A
                                φ=   kk  AA
                                     2A kA
                                    1
                                 t =
                                    2φ
                                      1
                                 c =
                                        2
                                      +
                                     1 t
                                  s =  t c
                                          s
                   (c)  Compute τ from  τ=
                                         +
                                        1 c
                   (d) Modify the elements in the upper half of A:
                               A =  A − t A kA
                                *
                                     kk
                                kk
                                *
                               A =  A − t A kA
                                     AA
                                AA
                                *
                               A =  A =  0
                                     *
                                     k A
                                kA
                                *
                                     *
                               A =  A =  A −  ( s A + τ A ki ), i ≠  , k i ≠  A
                                         ki
                                    ik
                                ki
                                                i A
                                *
                                     *
                               A =  A =  A +  ( s A − τ A  i A  ), i ≠  , k i ≠  A
                                          i A
                                    iA
                                i A
                                               ki
                             s
                   where  τ=
                             +
                            1 c
                   (e)  Update the matrix P
                               P =  P − s P + τ P ik )
                                *
                                    ik
                                         ( iA
                                ik
                               P =  P + s P − τ P iA  )
                                *
                                        ( ik
                                iA
                                    iA
                   Repeat the procedure until the A  < ∈, where ∈ is the error tolerance.
                                              kA
                    4.12  HOUSEHOLDER REDUCTION TO TRIDIAGONAL FORM
                   The computational procedure is carried out with i = 1, 2, …, n – 2 as described below:
                   (a)  Define A′ as the (n – i) × (n – i) lower-right hand portion of A
                                            , ]
                   (b)  Let  x =  [A i+ 1, i  A i+ 2, i  ...A n i  T
                   (c)  Compute |x|. Let k = |x| if x  > 0 and k = –|x| if x  < 0
                                              1
                                                               1
                   (d)  Let u =  [k +  x x x  ...x ni −  ] T
                                     2 3
                                   1
                                     2
                                    u
                   (e)  Compute  H = || / 2
                   (f )  Compute V =  A′  / u H
                                    T
                   (g)  Compute  g =  u v  /2H
                   (h)  Compute  w  = V  − gu
                                                             T
                                                        T
                   (i)  Compute the transformation A ←A′ – w u – u w
                   (j)  Set A i,i +1  = A i +1, i  = –k
   220   221   222   223   224   225   226   227   228   229   230