Page 221 - MATLAB an introduction with applications
P. 221

206 ———  MATLAB: An Introduction with Applications


                                b 1 
                               a 
                                11
                                 
                                b 2 
                               a 
                                22 
                                "   
                   where  {} =   
                         V
                                b i 
                                a ii 
                                 
                                "  
                                b 
                               a  n  
                                 nn   


                                  0    a 12  / a 11  a 13  / a 11  "  "  "  a 1n  / a 11 
                                a  / a    0    a  / a  "      "      "   a  / a  
                                 21  22         23  22                    2n  22 
                                 "       "       "     "      "      "     "   
                   and    [] =                                                 
                           B
                                 a 1 i  / a ii  a  2 i  / a ii  "  0  a ii+ 1  / a ii  "  a ii  / a nn 
                                 "       "       "     "      "      "     "   
                                                                               
                                a    1 n  / a nn  "  "  "  a  , n n− 1  / a nn  "  0   

                   The system of equations given in Eq. (4.8) can be written in the form
                                 {x} = {v} + [B]{x}                                                 ...(4.12)
                                                    (1)
                                                        (2)
                   Now we can construct expressions for x ... x ... in terms of x (0)
                              1
                           {x} = {v} + [B]x 0
                              2
                           {x} = {v} + [B]x l
                                = {v} + [B]({v} + [B]x )
                                                  (0)
                                                 2 0
                                = {v} + [B]({v} + [B] x )
                              3
                           {x} = {v} + [B]{x} (2)
                                = {v} + [B]({v} + [B]{v} + [B] x )
                                                        2 (0)
                                                2
                                                        3 0
                                = {v} + [B]{v} + [B] {v} + [B] x
                   Generalizing
                                                      ...
                                                 2
                                                            r–1
                                                                      r (0)
                              (r)
                               x  = {v} + [B]{v} + [B] {v} +   + [B] {v} + [B] x
                   Finally
                                                   3 ...
                                             2
                                                                    (r) (0)
                                                          r–1
                              (r)
                              x  = ([I] + [B] + [B]  + [B]    + [B] ){v} + [B] x                   ...(4.13)
                                                       3
                                                             r–1
                                                 2
                   Here, we notice that ([I] + [B] + [B]  + [B] ... [B] ) is a matrix geometric progression. It is possible to
                   obtain the sum of r terms of the above expressions. Let us denote
                                                   3 ...
                                             2
                                s  = [I] + [B] + [B]  + [B]    + [B] r–1
                               r
                                         r
                                   = ([I] – [B] )([I] – [B]) –1
   216   217   218   219   220   221   222   223   224   225   226