Page 90 - MATLAB an introduction with applications
P. 90

MATLAB Basics ——— 75


                       x =
                          8/5+ (–3/10–1/290*29^ (1/2))*exp (1/2*(–7+29^ (1/2))*t)–1/290*
                                   (–1+3*29^ (1/2))*29^ (1/2)*exp(–1/2*(7+29^ (1/2))*t)
                   Example E1.27: Given the differential equation

                                 2
                                dx     dx
                                       + 12  + 15 = 35 ;  t ≥ 0
                                             x
                                dt 2   dt
                   Using MATLAB program, find
                       (a)  x(t) when all the initial conditions are zero.
                       (b)  x(t) when x (0) = 0 and    x (0) = 1.

                   Solution:
                   (a) x (t) when all the initial conditions are zero
                       >> x = dsolve (‘D2x = –12*Dx – 15*x +35’, ‘x (0) = 0’)
                       x =
                                 7/3+ (–7/3–C2)*exp ((–6+21^ (1/2))*t) +C2*exp (–(6+21^ (1/2))*t)


                   (b) x (t) when x (0) = 0 and   x (0)= 1.
                       >> x = dsolve (‘D2x = –12*Dx – 15*x + 35’, ‘x (0) = 0’, ‘Dx (0) = 1’)
                       x =
                               7/3+ (–7/6–13/42*21^ (1/2))*exp ((–6+21^ (1/2))*t)–1/126*(39+7*21^
                                      (1/2))*21^ (1/2)*exp  (–(6+21^ (1/2))*t)

                   Example E1.28: Find the inverse of the following matrix using MATLAB.
                                    s  2  0
                                    
                                      A  =  2 s  –3  
                                    
                                      30  1 

                   Solution:
                       >> A = [s 2 0; 2 s –3; 3 0 1];
                       >> inv (A)
                       ans =
                           [s/(s^2–22),            –2/(s^2–22),       –6/(s^2–22)]
                           [–11/(s^2–22),         s/(s^2–22),         3*s/(s^2–22)]
                           [–3*s/(s^2–22),         6/(s^2–22),        (s^2–4)/(s^2–22)]

                   Example E1.29: Expand the following function F(s) into partial fractions using MATLAB. Determine the
                                                     1
                   inverse Laplace transform of  F(s) =   .
                                                     3
                                                s 4 +5 +7s 2
                                                    s










                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   85   86   87   88   89   90   91   92   93   94   95