Page 92 - MATLAB an introduction with applications
P. 92

MATLAB Basics ——— 77


                       r =
                            –0.5357 – 1.0394i
                            –0.5357 + 1.0394i
                             0.5357 – 0.1856i
                             0.5357 + 0.1856i
                       p =
                            –1.5000 + 1.3229i
                            –1.5000 – 1.3229i
                            –0.0000 + 1.7321i
                            –0.0000 – 1.7321i
                       k = [ ]
                   % From the above MATLAB output, we have the following expression:
                                      r      r      r      r
                               F(s) =   1  +  2  +  3  +   4
                                    s  − p 1  s  − p 2  s  − p 3  s  − p 4
                                                                 +
                                      − 0.5357 1.0394i   ( 0.5357 1.0394 )
                                                          −
                                             −
                                                                        i
                               F(s) =                 +
                                                           −
                                                                  −
                                                                         i
                                       ( 1.500 1.3229 )
                                    s −−      +     i   s −  ( 1.5000 1.3229 )
                                                              +
                                             −
                                       0.5357 0.1856i  −  0.5357 0.1856i
                                            +        +
                                       s −− +          s −− −
                                         ( 0 1.7321 ) i
                                                          ( 0 1.7321 ) i
                   % Note that the row vector k is zero implies that there is no constant term in this example problem.
                   % The MATLAB program for determining the inverse Laplace transform of F(s) is given below:
                       >> syms s
                       >> f = (5*s^2 + 3*s +6)/(s^4 + 3*s^3 + 7*s^2 + 9*s +12);
                       >> ilaplace(f )
                       ans =
                              11/14*exp(–3/2 * t)*7^(1/2)*sin(1/2*7^(1/2)*t) –15/14*exp(–3/
                              2*t)*cos(1/2*7^(1/2)*t) +3/14*3^ (1/2)*sin(3^(1/2)*t)+15/
                              14*cos(3^(1/2)*t)
                   Example E1.31: For the following function F(s):
                                           3
                                          s
                                                   s
                                      s 4  + 3 + 5s 2  + 7 +  25
                               F(s) =
                                    s 4  +  5s 3  +  20s 2  + 40 +  45
                                                    s
                   Using MATLAB, find the partial fraction expansion of F(s). Also, find the inverse Laplace transformation of
                   F(s).
                   Solution:
                                           3
                                          s
                                      s 4  + 3 + 5s 2  + 7 +  25
                                                   s
                               F(s) =
                                                    s
                                    s 4  +  5s 3  +  20s 2  + 40 +  45
                   The partial fraction expansion of F(s) using MATLAB program is given as follows:
                          num = [ 1  3  5  7  25];
                          den = [1  5  20  40  45];
                          [r, p, k] = residue(num, den)




                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   87   88   89   90   91   92   93   94   95   96   97