Page 91 - MATLAB an introduction with applications
P. 91

76 ———  MATLAB: An Introduction with Applications

                   Solution:
                   The MATLAB program for determining the partial fraction expansion is given below:
                       >> b = [0 0 0 0 1];
                       >> a = [1 5 7 0 0];
                       >> [r, p, k] = residue (b, a)
                       r =
                            0.0510 –0.0648i
                            0.0510 +0.0648i
                          –0.1020
                            0.1429
                       p =
                           –2.5000 + 0.8660i
                           –2.5000 – 0.8660i
                             0
                             0
                       k = [ ]
                   % From the above MATLAB output, we have the following expression:
                                       r     r      r      r
                               Fs      1  +   2  +  3  +   4
                                 () =
                                     s − p 1  s  − p 2  s  − p 3  s  − p 4
                                              −
                                                                  +
                                        0.0510 0.0648i      0.0510 0.0648i    –0.1020  0.1429
                                 () =
                               Fs                       +                    +        +
                                     s −−      +      i   s −−      −      i    s −  0  s −  0
                                                            ( 2.5000 0.8660 )
                                        ( 2.5000 0.8660 )
                   % Note that the row vector k is zero implies that there is no constant term in this example problem.
                   % The MATLAB program for determining the inverse Laplace transform of F(s) is given below:
                       >> syms s
                       >> f = 1/(s^4 + 5*s^3 + 7*s^2);
                       >> ilaplace ( f )
                       ans =
                        1/7*t–5/49+5/49*exp (–)*cos (1/2*3^ (1/2)*t) +11/147*exp (–5/2*t)*3^
                        (1/2)*sin(1/2*3^(1/2)*t)
                   Example E1.30: Expand the following function F(s) into partial fractions using MATLAB. Determine the
                   inverse Laplace transform of  F(s).
                                              3 +
                                         5s 2  + s  6
                               F(s) =
                                        3 +
                                                 9 +
                                     s 4  + s 3  7s 2  + s  12
                   Solution:
                   The MATLAB program for determining the partial fraction expansion is given below:
                       >> b = [0 0 5 3 6];
                       >> a = [1 3 7 9 12];
                       >> [r, p, k] = residue(b, a)







                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   86   87   88   89   90   91   92   93   94   95   96