Page 95 - MATLAB an introduction with applications
P. 95

80 ———  MATLAB: An Introduction with Applications


                   (d) >>syms t x
                       >>f = t*sin(7*t);
                       >> laplace( f, x)
                       ans =
                            1/(x^2+49)*sin(2*atan(7/x))
                   (e)  >>syms t x
                       >>f = 5*exp(–2*t)*cos(5*t);
                       >> laplace(f, x)
                       ans =
                            5*(x+2)/((x+2)^2+25)
                   (f )  >>syms t x
                       >>f = 3*sin(5*t+(pi/4));
                       >> laplace( f, x)
                       ans =
                            3*(1/2*x*2^(1/2)+5/2*2^(1/2))/(x^2 + 25)
                   (g) >>syms t x
                       >>f = 5*exp(–3*t)*cos(t–(pi/4));
                       >> laplace( f, x)
                       ans =
                            5*(1/2*(x + 3)*2^(1/2)+1/2*2^(1/2))/((x + 3)^2 + 1)

                   Example E1.34: Generate partial-fraction expansion of the following function:
                                               10 ( + 7)( + 13)
                                                        s
                                                   s
                                                 5
                                () =
                                     Fs            2          2
                                                      7 +
                                      ( +
                                                                 7 +
                                             s
                                     ss  25)( +  55)(s  + s  75)(s  + s  45)
                   Solution:
                       Generate the partial fraction expansion of the following function:
                       numg=poly[–7 –13];
                       numg=poly([–7 –13]);
                       deng=poly([0 –25 –55 roots([1 7 75])' roots([1 7 45])' ]);
                       [numg,deng]=zp2tf (numg',deng',1e5);
                       Gtf=(numg,deng);
                       Gtf=tf(numg,deng);
                       G=zpk(Gtf);
                       [r,p,k]=residue(numg,deng)
                       r =
                          1.0e – 017*
                          0.0000
                         –0.0014
                          0.0254
                         –0.1871
                          0.1621
                         –0.0001
                          0.0000
                          0.0011






                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   90   91   92   93   94   95   96   97   98   99   100