Page 45 - Machine Learning for Subsurface Characterization
P. 45

30   Machine learning for subsurface characterization



              TABLE 1.2 Performances of the four unsupervised ODTs on Dataset #2

                                     Dataset #2 results
                                    Balanced accuracy  F1       ROC-AUC
                                    score              score    score
              Isolation forest  FS1  0.93              0.23     0.97
                             FS2    0.64               0.11     0.87
                             FS2**  0.86               0.21     0.92
                             FS3    0.91               0.22     0.96
                             FS4    0.93               0.24     0.99
              One-class SVM  FS1    0.76               0.22     0.89
                             FS2    0.6                0.11     0.87
                             FS2**  0.65               0.14     0.88
                             FS3    0.74               0.21     0.88
                             FS4    0.84               0.28     0.95
              Local outlier  FS1    0.38               0.11     0.62
              factor
                             FS2    0.57               0.07     0.61
                             FS2**  0.56               0.08     0.63
                             FS3    0.61               0.1      0.62
                             FS4    0.61               0.09     0.55
              DBSCAN         FS1    0.58               0.18     NA
                             FS2    0.53               0.09     NA
                             FS2**  0.56               0.17     NA
                             FS3    0.58               0.14     NA
                             FS4    0.61               0.18     NA
              Visual representation of the performances in terms of balanced accuracy score is shown in Fig. 1.7B.
              **RT is replaced by RXO.




            5.4 Performance on Dataset #4 containing manually labeled outliers
            The offshore dataset contains seven log responses from different lithology,
            namely, limestones, sandstone, dolomite, shale, and anhydrites. The seven logs
            are gamma ray (GR), density (DEN), neutron porosity (NEU), compressional
            sonic transit time (AC), deep and medium resistivities (RDEP and RMED),
   40   41   42   43   44   45   46   47   48   49   50