Page 151 - Marks Calculation for Machine Design
P. 151

P1: Rakesh
                                      14:16
                          January 4, 2005
                 Brown˙C03
        Brown.cls
                              U.S. Customary  ADVANCED LOADINGS   SI/Metric       133
                    Step 2. Substitute the pressure (p i ), the inside  Step 2. Substitute the pressure (p i ), the inside
                    radius (r i ), and the outside radius (r o ) into these  radius (r i ), and the outside radius (r o ) into these
                    two expressions to obtain          two expressions to obtain
                                            2                                2
                              p i r i 2  r o                   p i r 2 i  r o
                         σ t =     1 +                    σ t =      1 +
                                                               2
                              2
                             r − r i 2  r i                   r − r 2 i  r i
                                                               o
                              o
                                   2
                                                                         2
                             (450 lb/in )(2in) 2              (3,150,000 N/m )(0.05 m) 2
                           =     2      2                   =        2       2
                              (4in) − (2in)                      (0.1m) − (0.05 m)
                                         2                                  2
                                    4in                               0.1m

                             × 1 +                            × 1 +
                                    2in                              0.05 m
                             1,800 lb                          7,875 N
                           =      (1 + 4)                   =        (1 + 4)
                              12 in 2                         0.0075 m 2
                                   2
                                                                        2
                           = (150 lb/in )(5)                = (1,050,000 N/m )(5)
                                                                        2
                                  2
                           = 750 lb/in = 750 psi            = 5,250,000 N/m = 5.25 MPa
                    and                                and
                              p i r 2        r o    2         p i r  2        r o    2
                         σ r =   i  1 −                  σ r =  i  1 −
                                                              2
                              2
                             r − r 2 i  r i                  r − r i 2  r i
                                                              o
                              o
                                    2
                                                                       2
                             (450 lb/in )(2in) 2             (3,150,000 N/m )(0.05 m) 2
                           =                               =
                                                                    2
                                  2
                              (4in) − (2in) 2                  (0.1m) − (0.05 m) 2
                                        2                                 2

                                    4in                             0.1m
                             × 1 −                           × 1 −
                                    2in                             0.05 m
                             1,800 lb                         7,875 N
                           =       (1 − 4)                 =        (1 − 4)
                              12 in 2                        0.0075 m 2
                                                                       2
                                   2
                           = (150 lb/in )(−3)              = (1,050,000 N/m )(−3)
                                    2
                                                                        2
                           =−450 lb/in =−450 psi           =−3,150,000 N/m =−3.15 MPa
                           =−p i                           =−p i
                      The maximum radial stress (σ max ) occurs at the inside radius, and is the negative of the
                                           r
                    internal pressure (p i ). The algebraic steps to show this fact are given in Eq. (3.8).
                                                                           2
                                                                        2
                                                      2
                            p i r i 2        r o    2     p i r i 2    r − r 2 o     p i r i 2    −(r − r )
                                                                       o
                                                                           i
                                                      i
                    σ  max  =     1 −       =                =
                     r      2  2               2   2    2        2     2   2   =−p i
                           r − r      r i     r − r    r        r     r − r
                           o   i               o   i    i        i     o   i

                             Eq.(1.55) with r =r i  find common denominator  rearrange and cancel terms
                                                                                 (3.8)
                    Axial Stress.  If the pressure (p i ) is confined at the ends, an axial stress (σ a ) is also
                    developed. The geometry and stresses, including the tangential stress (σ t ), are shown in
                    Fig. 3.6.
   146   147   148   149   150   151   152   153   154   155   156