Page 156 - Marks Calculation for Machine Design
P. 156

P1: Rakesh
                          January 4, 2005
                 Brown˙C03
        Brown.cls
                  138
                            U.S. Customary 14:16  STRENGTH OF MACHINES  SI/Metric
                  Example 7. Given a set of standard fit dimen-  Example 7. Given a set of standard fit dimen-
                  sions, calculate the maximum and minimum  sions, calculate the maximum and minimum
                  radial interferences, (δ max ) and (δ min ), and the  radial interferences, (δ max ) and (δ min ), and the
                  associated interface pressures, (p max ) and  associated interface pressures, (p max ) and
                  (p min ), for a solid shaft and collar assembly,  (p min ), for a solid shaft and collar assembly,
                  with both parts aluminum, where    with both parts aluminum, where
                    Hole: D max = 1.5010 in            Hole: D max = 4.0025 cm
                        D min = 1.5000 in                  D min = 4.0000 cm
                    Shaft: d max = 1.5016 in           Shaft: d max = 4.0042 cm
                         d min = 1.5010 in                 d min = 4.0026 cm
                          R = 1.5 in                         R = 4.0 cm = 0.04 m
                          r o = 3in                          r o = 8.0 cm = 0.08 m
                                                                     9
                                                                         2
                                       2
                                   6
                          E = 11 × 10 lb/in (aluminum)       E = 77 × 10 N/m (aluminum)
                  solution                           solution
                  Step 1. Calculate the maximum radial inter-  Step 1. Calculate the maximum radial inter-
                  ference (δ max ) from Eq. (3.17) as  ference (δ max ) from Eq. (3.17) as
                            1     max  min                    1     max  min
                      δ max =  d shaft  − D hole        δ max =  d shaft  − D hole
                            2                                 2
                            1                                 1
                          =  (1.5016 in − 1.5000 in)        =  (4.0042 cm − 4.0000 cm)
                            2                                 2
                            1                                 1
                          =  (0.0016 in)                    =  (0.0042 cm)
                            2                                 2
                          = 0.0008 in                       = 0.0021 cm = 0.000021 m
                  Step 2. Calculate the minimum radial interfer-  Step 2. Calculate the maximum radial inter-
                  ence (δ min ) from Eq. (3.18) as   ference (δ min ) from Eq. (3.18) as
                            1     min  max                    1     min  max
                      δ min =  d shaft  − D hole        δ min =  d shaft  − D hole
                            2                                 2
                            1                                 1
                          =  (1.5010 in − 1.5010 in)        =  (4.0026 cm − 4.0025 cm)
                            2                                 2
                            1                                 1
                          =  (0.0000 in)                    =  (0.0001 cm)
                            2                                 2
                          = 0in                             = 0.00005 cm = 0.0000005 m
                  Step 3. Using the maximum radial interface  Step 3. Using the maximum radial interface
                  (δ max ) found in Step 1, calculate the maximum  (δ max ) found in Step 1, calculate the maximum
                  interface pressure (p max ) from Eq. (3.15) as  interface pressure (p max ) from Eq. (3.15) as
                                        2                                 2

                           Eδ max    R                       Eδ max    R
                     p max =    1 −                    p max =    1 −
                            2R      r o                       2R      r o
                                                                   9
                                 6
                                     2
                                                                      2
                           (11 × 10 lb/in )(0.0008 in)       (77 × 10 N/m )(0.000021 m)
                         =                                 =
                                 2 (1.5in)                         2 (0.04 m)

                                       2                                  2

                                 1.5in                             0.04 m
                           × 1 −                             × 1 −
                                  3in                              0.08 m
                           8,800 lb/in                       1,617,000 N/m
                         =        (1 − 0.25)               =           (1 − 0.25)
                             3in                                0.08 m
                                  2
                                                                        2
                         = (2,933 lb/in )(0.75)            = (20,212,500 N/m )(0.75)
                                                                       2
                                 2
                         = 2,200 lb/in = 2.2 kpsi          = 15,160,000 N/m = 15.2MPa
   151   152   153   154   155   156   157   158   159   160   161