Page 212 - Marks Calculation for Machine Design
P. 212

P1: Shibu/Sanjay
                          January 4, 2005
                 Brown˙C05
        Brown.cls
                  194
                            U.S. Customary 14:35  STRENGTH OF MACHINES  SI/Metric
                  Step 6. Similarly, using Eq. (5.3), calculate the  Step 6. Similarly, using Eq. (5.3), calculate the
                  rotated stress (τ x   y  ) from the unrotated stresses  rotated stress (τ x   y  ) from the unrotated stresses
                  given in step 4.                   given in step 4.
                           σ xx − σ yy                       σ xx − σ yy
                    τ x   y   =−  sin 2θ + τ xy cos 2θ  τ x   y   =−  sin 2θ + τ xy cos 2θ
                             2                                 2
                           (4.8 − 9.6) kpsi                  (37.7 − 75.4) MPa
                                                                               ◦
                                           ◦
                       =−             sin 2(60 )         =−               sin 2(60 )
                               2                                  2
                                                                        ◦
                                      ◦
                         +(0 kpsi) cos 2(60 )              − (0MPa) cos 2(60 )
                           (−4.8 kpsi)                       (−37.7MPa)
                                                                           ◦
                                        ◦
                       =−          sin (120 )            =−           sin (120 )
                              2                                 2
                                      ◦
                                                                        ◦
                         +(0 kpsi) cos (120 )              − (0MPa) cos (120 )
                       =−(−2.4 kpsi)(0.866) + (0 kpsi)   =−(−18.85 MPa)(0.866) − (0MPa)
                       = (2.08 + 0) kpsi                 = (16.32 − 0) MPa
                       = 2.1 kpsi                        = 16.3MPa
                  Step 7. Display the rotated stresses found in  Step 7. Display the rotated stresses found in
                  steps 4, 5, and 6, in kpsi, on the rotated element  steps 4 to 6, in MPa, on the rotated element of
                  of Fig. 5.2.                       Fig. 5.2.
                               2.1      8.4                   16.3      66.0
                        6.0                             47.1
                                          60°                            60°
                                            6.0                            47.1
                                   2.1
                          8.4                            66.0

                    As a check on the calculations involved in applying Eqs. (5.1) to (5.3), like that in
                  Example 1, the following relationship given by Eq. (5.6) must always be satisfied between
                  two sets of stresses at different rotation angles (θ).

                                          σ x x + σ y y = σ xx + σ yy          (5.6)


                            U.S. Customary                       SI/Metric
                  Example 2. Verify that the values for the un-  Example 2. Verify that the values for the un-
                  rotated and rotated normal stresses of Example  rotated and rotated normal stresses of Example
                  1 satisfy Eq. (5.6), where         1 satisfy Eq. (5.6), where
                       σ x   x   + σ y   y   = σ xx + σ yy  σ x   x   + σ y   y   = σ xx + σ yy
                    (8.4 + 6.0 ) kpsi = (4.8 + 9.6) kpsi  (66.0 + 47.1) MPa = (37.7 + 75.4) MPa
                        14.4 kpsi ≡ 14.4 kpsi               113.1 MPa ≡ 113.1 MPa
                    Clearly the stresses check.        Clearly the stresses check.
   207   208   209   210   211   212   213   214   215   216   217