Page 211 - Marks Calculation for Machine Design
P. 211

P1: Shibu/Sanjay
                          January 4, 2005
                                      14:35
        Brown.cls
                 Brown˙C05
                                     PRINCIPAL STRESSES AND MOHR’S CIRCLE
                              U.S. Customary                      SI/Metric       193
                            σ xx + σ yy  σ xx − σ yy          σ xx + σ yy  σ xx − σ yy
                      σ x   x   =  +       cos 2θ       σ x   x   =  +       cos 2θ
                              2        2                        2        2
                           +τ xy sin 2θ                      +τ xy sin 2θ
                            (4.8 + 9.6) kpsi                  (37.7 + 75.4) MPa
                         =                                  =
                                2                                  2
                             (4.8 − 9.6) kpsi                  (37.7 − 75.4) MPa
                                                                                  ◦
                                              ◦
                            +           cos 2(60 )            +             cos 2(60 )
                                  2                                  2
                                                                          ◦
                                        ◦
                            +(0 kpsi) sin 2(60 )              +(0MPa) sin 2(60 )
                            (14.4 kpsi)                       (113.1MPa)
                         =                                  =
                               2                                 2
                             (−4.8 kpsi)                       (−37.7MPa)
                                                                              ◦
                                           ◦
                            +         cos (120 )              +          cos (120 )
                                2                                  2
                                        ◦
                                                                          ◦
                            +(0 kpsi) sin (120 )              +(0MPa) sin (120 )
                         = (7.2 kpsi)                       = (56.55 MPa)
                            +(−2.4 kpsi)(−0.5)                +(−18.85 MPa)(−0.5)
                            +(0 kpsi)                         +(0MPa)
                         = (7.2 + 1.2 + 0) kpsi             = (56.55 + 9.43 + 0) MPa
                         = 8.4 kpsi                         = 66.0MPa
                    Step 5. Similarly, using Eq. (5.2), calculate the  Step 5. Similarly, using Eq. (5.2), calculate the
                    rotated stress (σ y   y  ) from the unrotated stresses  rotated stress (σ y   y  ) from the unrotated stresses
                    given in step 4.                   given in step 4.
                            σ xx + σ yy  σ xx − σ yy          σ xx + σ yy  σ xx − σ yy
                      σ y   y   =  −       cos 2θ       σ y   y   =  −       cos 2θ
                              2        2                        2        2
                           − τ xy sin 2θ                     − τ xy sin 2θ
                            (4.8 + 9.6) kpsi                  (37.7 + 75.4) MPa
                      σ y   y   =                       σ y   y   =
                                2                                  2
                             (4.8 − 9.6) kpsi                  (37.7 − 75.4) MPa
                                                                                  ◦
                                              ◦
                           −            cos 2(60 )           −              cos 2(60 )
                                  2                                  2
                                        ◦
                           − (0 kpsi) sin 2(60 )             − (0MPa) sin 2(60 )
                                                                          ◦
                            (14.4 kpsi)                       (113.1MPa)
                         =                                  =
                               2                                 2
                             (−4.8 kpsi)                       (−37.7MPa)
                                           ◦
                                                                              ◦
                           −          cos (120 )             −           cos (120 )
                                2                                  2
                                                                          ◦
                           − (0 kpsi) sin (120 )             − (0MPa) sin (120 )
                                        ◦
                         = (7.2 kpsi)                       = (56.55 MPa)
                           − (−2.4 kpsi)(−0.5)               − (−18.85 MPa)(−0.5)
                           − (0 kpsi)                        − (0MPa)
                         = (7.2 − 1.2 − 0) kpsi             = (56.55 − 9.43 − 0) MPa
                         = 6.0 kpsi                         = 47.1MPa
   206   207   208   209   210   211   212   213   214   215   216