Page 332 - Marks Calculation for Machine Design
P. 332

P1: Shashi
                          January 4, 2005
                 Brown˙C07
        Brown.cls
                  314
                  Step 5. Multiply the alternating normal stress (σ a ) by the reduced stress concentration
                  factor (K f ) to give  15:4  STRENGTH OF MACHINES
                                       σ a = (1.15)(20 kpsi) = 23 kpsi
                  Step 6. There are no alternating axial stresses, so proceed to step 7.
                  Step 7. Calculate the two sets of principal stresses using Eqs. (7.36) and (7.37); one set
                  for the mean normal and shear stresses and one set for the alternating normal and shear
                  stresses.

                                           2      (10 kpsi)    10 kpsi    2
                        m
                                              2
                       σ ,σ m  =  σ m  ±  σ m  + τ =     ±            + (8 kpsi) 2
                        1  2                  m
                                2      2            2           2

                                                   2                   2
                             = (5 kpsi) ±  (25 + 64) kpsi = (5 kpsi) ±  (89) kpsi
                             = (5 kpsi) ± (9.4 kpsi) = 14.4 kpsi, −4.4 kpsi


                                                                     2
                         a  a  σ a      σ a    2  2  (23 kpsi)  23 kpsi      2
                        σ ,σ =    ±        + τ =        ±            + (0 kpsi)
                         1  2   2      2     a      2          2

                                                   2
                             = (11.5 kpsi) ±  (11.5 kpsi) = (11.5 kpsi) ± (11.5 kpsi)
                             = 23 kpsi, 0 kpsi
                  Step 8. Using Eqs. (7.38) and (7.39) calculate the effective mean stress and the effective
                  alternating stress.

                     eff     m 2     m 2     m      m     2     2                2


                   σ m  =  σ 1  + σ 2  − σ 1  σ 2  =  (14.4) + (−4.4) − (14.4)(−4.4) kpsi

                                                   2              2
                       =  (207.36) + (19.36) + (63.36) kpsi =  (290.08) kpsi
                       = 17 kpsi

                     eff     a 2     a 2     a      a     2  2         2


                   σ a  =  σ 1  + σ 2  − σ 1  σ 2  =  (23) + (0) − (23)(0) kpsi
                       = 23 kpsi
                  Step 9A. Using Eq. (7.40) calculate the factor-of-safety (n) as
                         σ a eff  σ m eff  1  23 kpsi  17 kpsi
                            +     =   =        +       = (0.799) + (0.227) = 1.026
                         S e  S ut  n   28.8 kpsi  75 kpsi
                                      1
                                n =      = 0.975 (unsafe!)
                                    1.026
                  which as the factor-of-safety (n) is less than 1 means the design is unsafe.
                  Step 9B. Plot the mean effective stress (σ eff ) and alternating effective stress (σ eff ) from
                                                 m                          a
                  step 8, the given ultimate shear strength (S ut ), and the endurance limit (S e ) calculated in
                  step 1F in a Goodman diagram like that shown in Fig. 7.31.
                    Notice that the point (σ m eff ,σ a eff ) is just outside the Goodman line, confirming the calcu-
                  lation in step 9A that the design is unsafe.
   327   328   329   330   331   332   333   334   335   336   337