Page 331 - Marks Calculation for Machine Design
P. 331

P1: Shashi
                          January 4, 2005
                 Brown˙C07
        Brown.cls
                                                 ◦
                    Step 1D. The shaft is operating at 200 F so the temperature factor (k d ) from Eq. (7.15)
                    and Table 7.2 is  15:4 FATIGUE AND DYNAMIC DESIGN             313
                                                k d = 1.020
                    Step 1E. Using the given ultimate tensile stress (S ut ) and the guidelines in Eq. (7.1),

                    calculate the test specimen endurance limit (S ) as
                                                     e

                                   S = 0.504 S ut = (0.504)(75 kpsi) = 37.8 kpsi
                                    e

                    Step 1F. Using the test specimen endurance limit (S ) found in step 1E, and the modifying
                                                         e
                    factors found in steps 1A through 1D, calculate the endurance limit (S e ) for the solid shaft
                    using the Marin equation for combined loading in Eq. (7.35) as

                                S e = k a k b (1)k d S = (0.86)(0.87)(1)(1.020)(37.8 kpsi)
                                            e
                                  = (0.763)(37.8 kpsi) = 28.8 kpsi
                    Step 2. The normal and shear stresses are given, and displayed in Fig. 7.30.
                                              0
                                                  t = 8 kpsi
                                                        s   = 10 kpsi
                                   s axial               axial
                                   s bending            s bending  = ± 20 kpsi
                                        t
                                              0
                               FIGURE 7.30  Plane stress element for Example 1 (U.S. Customary).

                    Step 3. Calculate the maximum normal stress (σ max ) and the minimum normal stress
                    (σ min ) as
                              σ max = σ axial + σ bending = (10 kpsi) + (20 kpsi) = 30 kpsi
                              σ min = σ axial − σ bending = (10 kpsi) − (20 kpsi) =−10 kpsi

                    Step 4A. Calculate the mean normal stress (σ m ) and the alternating normal stress (σ a ) as
                                σ max + σ min  (30 kpsi) + (−10 kpsi)  20 kpsi
                           σ m =          =                   =       = 10 kpsi
                                    2               2             2
                                σ max − σ min  (30 kpsi) − (−10 kpsi)  40 kpsi
                           σ a =          =                   =       = 20 kpsi
                                    2               2             2
                    Step 4B. As the shear stress due to the torque is constant, the mean shear stress (τ m ) and
                    alternating shear stress (τ a ) are
                                                τ m = 8 kpsi
                                                τ a = 0 kpsi
   326   327   328   329   330   331   332   333   334   335   336