Page 382 - Marks Calculation for Machine Design
P. 382

P1: Sanjay
                          January 4, 2005
                 Brown˙C08
        Brown.cls
                  364
                            U.S. Customary 15:14  APPLICATION TO MACHINES  SI/Metric
                  Step 4. Substitute the given information in  Step 4. Substitute the given information in
                  Eq. (8.86) to determine the polar moment of  Eq. (8.86) to determine the polar moment of
                  inertia (J group ) as              inertia (J group ) as
                                      2
                                                                       2
                          (2 L 1 + L 2 ) 3  L (L 1 + L 2 ) 2  (2 L 1 + L 2 ) 3  L (L 1 + L 2 ) 2
                                                                       1
                                      1
                    J group =      −                 J group =      −
                              12      2 L 1 + L 2              12       2 L 1 + L 2
                          (2(5in) + (10 in)) 3             (2(0.13 m) + (0.26 m)) 3
                        =                                =
                                12                                 12
                                                                  2
                               2
                           (5in) (5in + 10 in) 2             (0.13 m) (0.13 m + 0.26 m) 2
                          −                                −
                              2(5in) + 10 in                    2(0.13 m) + 0.26 m
                                                                           2
                                      2
                          (20 in) 3  (25 in )(15 in) 2     (0.52 m) 3  (0.0169 m )(0.39 m) 2
                        =       −                        =        −
                            12       20 in                    12         0.52 m
                          8,000 in 3  5,625 in 4           0.1406 m 3  0.00257 m 4
                        =        −                       =         −
                            12      20 in                     12      0.52 m
                        = (666.67 − 281.25) in 3         = (0.01172 − 0.00494) m 3
                        = 385.4in 3                      = 0.00678 m 3
                  Step 5. Substitute the radial distance (r o )  Step 5. Substitute the radial distance (r o )
                  found in step 3, the polar moment of inertia  found in step 3, the polar moment of inertia
                  (J group ) found in step 4, and the given infor-  (J group ) found in step 4, and the given infor-
                  mation in Eq. (8.73) to determine (τ torsion ) as  mation in Eq. (8.73) to determine (τ torsion ) as
                            PL o r o                         PL o r o
                     τ torsion =                      τ torsion =
                            J group                          J group
                            (18,000 lb)(10 in)(6.25 in)      (81,000 N)(0.26 m)(0.1625 m)
                          =                                =
                                 385.4in 3                         0.00678 m 3
                            1,125,000 lb · in 2  in          3,422 N · m 2  m
                          =             ×                  =        3  ×
                              385.4in 3   in                 0.00678 m  m
                                                                      2
                                   2
                          = 2,919 (lb/in ) · in            = 504,800 (N/m ) · m
                          = 2.9 kpsi · in                  = 0.50 MPa · m
                  Step 6. Substitute the distance (D o ) from  Step 6. Substitute the distance (D o ) from
                  step 2 and the given information in Eq. (8.87)  step 2 and the given information in Eq. (8.87)
                  to determine the angle (α) as      to determine the angle (α) as
                      α = tan −1  L 1 − D o             α = tan −1  L 1 − D o
                                L 2                               L 2
                                2                                 2
                              (5in) − (1.25 in)                 (0.13 m) − (0.0325 m)
                        = tan −1                          = tan −1
                                 (10 in)                            (0.26 m)
                                   2                                   2
                              3.75 in                           0.0975 m
                        = tan −1   = tan −1 (0.75)        = tan −1     = tan −1 (0.75)
                               5in                              0.13 m
                        = 37 ◦                            = 37 ◦
                  Step 7. Substitute the angle (α) found in step 6  Step 7. Substitute the angle (α) found in step 6
                  in Eq. (8.88) to determine the angle (β) as  in Eq. (8.88) to determine the angle (β) as
                          ◦
                                                                         ◦
                                                             ◦
                                       ◦
                                  ◦
                                                                     ◦
                     β = 180 − α = 180 − 37 = 143 ◦    β = 180 − α = 180 − 37 = 143 ◦
   377   378   379   380   381   382   383   384   385   386   387