Page 377 - Marks Calculation for Machine Design
P. 377

P1: Sanjay
                                      15:14
                          January 4, 2005
        Brown.cls
                 Brown˙C08
                              U.S. Customary  MACHINE ASSEMBLY    SI/Metric       359
                    Step 2. Substitute the given information in  Step 2. Substitute the given information in
                    Eq. (8.81) to determine the moment of inertia  Eq. (8.81) to determine the moment of inertia
                    (I group ) as                      (I group ) as
                              3                                  3
                            LH                                 LH
                    I group = 2  + LHd 2 o             I group = 2  + LHd 2 o
                             12                                 12
                             (2.5in)(0.265 in)                 (0.06 m)(0.007 m)
                                        3                                3       
                                  12                                 12
                        = 2                              = 2                     
                             +(2.5in)(0.265 in)(0.75 in) 2     +(0.06 m)(0.007 m)(0.02 m) 2
                                                 4
                                                                                  4
                        = 2((3.88 × 10 −3  + 3.727 × 10 −1 ) in )  = 2((1.7 × 10 −9  + 1.68 × 10 −7  ) m )
                        = 7.53 × 10 −1  in 4               = 3.39 × 10 −7  m 4
                    Step 3. Substitute the moment of inertia  Step 3. Substitute the moment of inertia
                    (I group ) found in step 2 and the given informa-  (I group ) found in step 2 and the given informa-
                    tion in Eq. (8.80) to determine (σ bending ) as  tion in Eq. (8.80) to determine (σ bending ) as
                               PL o d o                         PL o d o
                       σ bending =                       σ bending =
                               I group                          I group
                               (800 lb)(18 in)(0.75 in)         (3,600 N)(0.45 m)(0.02 m)
                             =             4                  =           −7  4
                                 7.53 × 10 −1  in                   3.39 × 10  m
                               10,800 lb · in 2                   32.4N · m 2
                             =                                =       −7  4
                               7.53 × 10 −1  in 4               3.39 × 10  m
                             = 14,343 lb/in 2                 = 95,580,000 N/m 2
                             = 14.3 kpsi                      = 95.6MPa
                             = σ xx                           = σ xx
                          σ yy = 0                         σ yy = 0
                    Step  4. Substitute  the  normal  stresses  Step  4. Substitute  the  normal  stresses
                    (σ bending = σ xx ) and (σ yy = 0) from step 3  (σ bending = σ xx ) and (σ yy = 0) from step 3
                    in Eq. (5.14) to determine the average stress  in Eq. (5.14) to determine the average stress
                    (σ avg ) as                        (σ avg ) as
                           σ xx + σ yy  (14.3 kpsi) + (0)     σ xx + σ yy  (95.6MPa) + (0)
                      σ avg =     =                     σ avg =      =
                              2           2                      2          2
                         = 7.15 kpsi                        = 47.8MPa
                    Step  5. Substitute  the  normal  stresses  Step  5. Substitute  the  normal  stresses
                    (σ bending = σ xx ) and (σ yy = 0) from step 3  (σ bending = σ xx ) and (σ yy = 0) from step 3
                    and the shear stress (τ shear = τ xy ) from step 1  and the shear stress (τ shear = τ xy ) from step 1
                    in Eq. (5.14) to determine the maximum shear  in Eq. (5.14) to determine the maximum shear
                    stress (τ max ) as                 stress (τ max ) as

                                      2                                  2

                             σ xx − σ yy                        σ xx − σ yy
                                                                           2
                                         2
                     τ max =          + τ xy            τ max =          + τ xy
                                2                                  2

                                       2                                  2

                             (14.3) − (0)                       (95.6) − (0)
                                             2
                                                                               2
                         =              + (0.6 ) kpsi      =              + (4.3 ) MPa
                                 2                                 2

                         =  (51.12) + (0.36 ) kpsi         =  (2,284.8) + (18.5 ) MPa
                          √
                         =  51.48 kpsi = 7.18 kpsi         =  2,303.3 kpsi = 48.0MPa
   372   373   374   375   376   377   378   379   380   381   382