Page 145 - Mathematical Models and Algorithms for Power System Optimization
P. 145

136 Chapter 5


                                            B 0  1
            (3) Derive respectively B b R,B b R   .
                                              0
                                  2                                          3
                                     30:675 30:675       0        0      0
                                  6    0      31:153 31:153       0      0   7
                                  6                                          7
                             B b R5  30:675     0      30:675     0      0   7
                                  6
                                  6                                          7
                                  4    0      13:605     0     13:605    0   5
                                       0        0      21:413     0   21:413
                                           2                               3
                                              0:3344 0:3282     0   0:3282
                                              0:3365  0:6698 0  0:6698
                                     0  1     6                            7
                                   B       6                               7
                              B b R      ¼  0:6656  0:3313 0  0:3313       7
                                           6
                                     0     6                               7
                                                0        0      0     1
                                           4                               5
                                                1        1      1      1
            (4) Based on the general expression of the LCO model from this section, combined with the
                 specific form of the case, and note the fact that P D4 ¼P D5 ¼P C4 ¼P C5 ¼0,
                 P G1 ¼P G2 ¼P G3 ¼0 and balance bus θ5¼0, the specific expression of linear
                 programming can be found.
            (5) Formulate the specific expression of linear programming for the LCO model, where there
                 arefivevariables,oneequalityconstraint,fiverangeconstraints,andfiveboundconstraints.

                                        min ð C 1 P C1 + C 2 P C2 + C 3 P C3 Þ

                 s.t. Equality constraint:
                                                      2    3
                                                       P C1
                                                       P C2
                                                      6    7
                                                      6    7
                                         ½  11 11 1Š P C3  7  ¼ 3:3
                                                      6
                                                      6    7
                                                       P G4
                                                      4    5
                                                       P G5
                 Range constraints:
                    2         3  2                               3          2        3
                       1:1843       0:3344 0:3282     0   0:3282   2    3     0:7757
                                                                     P C1
                       1:9656       0:3365  0:6698 0  0:6698                  0:3544
                    6         7  6                               7          6        7
                    6         7  6                               76  P C2  7  6      7
                       1:9776    0:6656  0:3313 0  0:3313                    0:0176
                    6         7  6                               76     7   6        7
                    6         7  6                               74  P C3  5  6      7
                       1:5000         0        0      0      1                1:5000
                    4         5  4                               5          4        5
                                                                    P G4
                       6:3000          1        1     1      1                 0:3000
                 Bound constraints:
                                          2   3   2    3   2    3
                                           0        P C1     1:2
                                           0                 0:6
                                          6   7   6  P C2  7  6  7
                                          6   7   6    7   6    7
                                           0               1:5
                                          6   7    P C3  7  6   7
                                                  6
                                          6   7   6    7   6    7
                                           0:3               1:4
                                          4   5   4  P G4  5  4  5
                                           2:0      P G5     3:0
   140   141   142   143   144   145   146   147   148   149   150