Page 312 - Mathematical Models and Algorithms for Power System Optimization
P. 312

304 Chapter 8


            The first derivative of time t for V is required to be less than zero:

                                                                   i
                                       X      X h    _
                                                        _
                                                             €
                                   V¼     V i ¼    δ i δ i + δ 50Þ δ 50ð  Þ   0          (8.40)
                                                         ð
                                                             i    i

            The sufficient condition for V monotonous decreasing is that each component V i of V should be
            less than 0, that is:
                                             h                i
                                                _  _     €
                                        V i ¼ δ i δ i + δ 50ðÞ δ 50ð  Þ   0              (8.41)
                                                        i    i
            Substitute Eq. (8.38) into Eq. (8.41); the forms of the norm reduction control criterion in the

            space δ, δ 50ð  Þ could be derived as follows after sorting and moving, etc.:
                                   _          0
                         8
                         >      J i δ i δ i  E U i
                         >                    i                 _       _
                                                                         ð
                                                   ð
                         >  u i      + P mi      sin δ i  α i Þ P Di δ 50ð  Þ  δ 50Þ > 0
                         >     _              0                      i       i
                         <                   X
                               δ 50ðÞ
                                    i         di                                         (8.42)
                                   _
                         >                    0
                                              i
                         >      J i δ i δ i  E U i
                         >                                      _       _
                                                   ð
                                                                         ð
                         >  u i      + P mi      sin δ i  α i Þ P Di δ 50ð  Þ  δ 50Þ > 0
                         :     _              0                      i       i
                               δ 50ðÞ        X di
                                    i

            (2) The form of the norm reduction control criterion in the space δ, δ s . Let
                                              _
                       W 1i ¼ δ ¼ δ i  δ ei , W 2i ¼ δ si ¼ ω i  ω s , U i ¼ U i  U ei , α i ¼ α i  α ei  (8.43)
            where
                                                    X
                                                        J j ω j
                                                ω s ¼ X
                                                         J j

            Then the dynamic equation in the space δ, δ s is of the following form:
                8
                   _    _        _
                >  W 1i ¼ δ i ¼ W 2i  δ ei  ω 0 + ω s
                >
                >

                <           1          0
                   _    €            E
                                       i
                                                                            ð
                                                    ½
                  W 2i ¼ δ si ¼  P mi    U i + U ei sin W Li + δ ei   α i + α ei ފ P Di W 2i  ω 0 + ω s Þ
                                                              ð
                            J i
                >                    X  0
                >                     di
                >
                :
                    _ ω s ð i 2 1, NŠÞ
                           ½
                                                                                         (8.44)
            Define the norm as:
                                                    X
                                             X          1  2   2
                                         V ¼    V i ¼     δ + δ _  si                    (8.45)
                                                           i
                                                        2
            The first derivative of time t for V is required to be less than zero:
                                                 X
                                          X             _
                                                           _ €
                                       V¼     V¼      δ i δ i + δ si δ si   0            (8.46)
   307   308   309   310   311   312   313   314   315   316   317