Page 29 - Mathematical Techniques of Fractional Order Systems
P. 29

Variable Order Fractional Derivatives and Bone Remodeling Chapter | 1  19


                                      Healthy vs tumorous bone    Healthy bone
                Osteoclasts [cells]  20                           Tumor disrupted bone
                 25
                 15
                 10
                 0 5
                  0        200      400      600       800      1000     1200
               1000
               Osteoblasts [cells]  800                           Healthy bone
                                                                  Tumor disrupted bone
                600
                400
                200
                 0
                  0        200      400      600       800      1000     1200
                120                                               Healthy bone
               Bone mass [%]  80                                  Tumor disrupted bone
                100
                 60
                 40
                 20
                 0
                  0        200      400      600       800      1000     1200
                                          Time t [days]
             FIGURE 1.6 Osteoclasts, Osteoblasts, and Bone Mass evolutions, respectively. In dashed
             lines, simulation of Eq. (1.17) for the existing model replicating a healthy bone microenviron-
             ment. In full lines, simulation of Eq. (1.18), for a bone microenvironment disrupted by a devel-
             oping tumor. Black lines represent stationary states. Tumor evolution is represented, in a full-
             blue line, on the left-side graphic of Fig. 1.10. Parameters were set according to Ayati et al.
             (2010), and can be found in Table 1.2.



                                        TðtÞ          TðtÞ
                                                               d
                                g CC  11r CC   g BC  11r BC  ð 11K s 1 1 ðtÞÞ
                                        L T            L T
                    1
                  D CðtÞ 5 α C CðtÞ        BðtÞ                       ð1:19aÞ
                                  d
                          2 ð1 1 K s 2 2 ðtÞÞβ CðtÞ
                                        C
                                          !
                                     g CB

                                        TðtÞ         TðtÞ
                     1                          g BB 2r BB L T
                   D BðtÞ 5 α B CðtÞ  11r CB L T  BðtÞ  2 β BðtÞ      ð1:19bÞ
                                                            B

                     1                           L T
                                  d ðtÞÞγ TðtÞlog
                   D TðtÞ 5 ð1 2 K i 34 c 34  T                       ð1:19cÞ
                                                 TðtÞ
                The previous models can be extended to dimensional geometries,
             modeling diffusion processes in the bone through partial differential
             equations.
                Ayati et al. (2010) also extended its model to Eq. (1.20) by allowing the
                                          2
                                          @
             diffusion over one-dimension, σ i @x 2 , of osteoclasts, osteoblasts, and bone
             mass. They now depend on both t and xA½0; 1Š. The diffusion of z accounts
             for the stochastic nature of bone dynamics and not necessarily migration of
             cells.
   24   25   26   27   28   29   30   31   32   33   34