Page 33 - Mathematical Techniques of Fractional Order Systems
P. 33

Variable Order Fractional Derivatives and Bone Remodeling Chapter | 1  23


                               @ 2
                    1
                   D Cðt; xÞ 5 σ C  2  Cðt; xÞ 2 β Cðt; xÞ 1
                                          C
                               @x
                                                                      ð1:21aÞ

                                            TðtÞ             TðtÞ
                                     g CC  11r CC    g BC  11r BC
                                             L T             L T
                           1 α C Cðt; xÞ        Bðt; xÞ
                               @ 2
                    1
                   D Bðt; xÞ 5 σ B  2  Bðt; xÞ 2 β Bðt; xÞ 1
                                          B
                               @x
                                                                      ð1:21bÞ

                                         g CB
                                          TðtÞ            TðtÞ
                                      11r CB         g BB 2r BB
                                           L T             L T
                           1 α B Cðt; xÞ       Bðt; xÞ
                               @ 2
                    1                                L T
                  D Tðt; xÞ 5 σ T  2  Tðt; xÞ 1 γ Tðt; xÞlog          ð1:21cÞ
                                          T
                              @x                    Tðt; xÞ
                In Christ et al. (2018), the model of Ayati et al. (2010) adapted in Coelho
             et al. (2015), is further extended to include the PK/PD action of anticancer
             and antiresorptive therapy in the one-dimensional model of Eq. (1.22).
             Simulation results are presented in Fig. 1.9 for a two-case scenario.
                           @ 2
                1
                                            d
                                                 C
               D Cðt; xÞ 5 σ C  2  Cðt; xÞ 2 ð1 1 K s 2 2 ðtÞÞβ Cðt; xÞ 1
                           @x
                                                                      ð1:22aÞ

                                         TðtÞ            TðtÞ
                                                                 d
                                 g CC  11r CC    g BC  11r BC  ð 11K s 1 1 ðtÞÞ
                                         L T             L T
                       1 α C Cðt; xÞ        Bðt; xÞ
                           @ 2
                1
               D Bðt; xÞ 5 σ B  Bðt; xÞ 2 β Bðt; xÞ 1
                                      B
                           @x 2
                                                                      ð1:22bÞ

                                     g CB
                                       TðtÞ           TðtÞ
                                  11r CB         g BB 2r BB
                                       L T             L T
                       1 α B Cðt; xÞ       Bðt; xÞ
                           @ 2
                1                                             L T
                                            d ðtÞ γ Tðt; xÞlog
               D Tðt; xÞ 5 σ T  2  Tðt; xÞ 1 1 2 K i 34 c 34  T       ð1:22cÞ
                           @x                                Tðt; xÞ
                Involved variables and parameters are summarized in Tables 1.1 and 1.2.
             1.4  VARIABLE ORDER MODELS—CREATING COMPACT
             BIOCHEMICAL BONE REMODELING MODELS
             Fractional and variable order derivatives have been already successfully used
             in modeling the dynamics of bone remodeling. Christ et al. (2018) imple-
             mented fractional derivatives in the differential equations of bone remodeling
   28   29   30   31   32   33   34   35   36   37   38