Page 401 - Mathematical Techniques of Fractional Order Systems
P. 401

390  Mathematical Techniques of Fractional Order Systems





























            FIGURE 13.11 Bifurcation diagram for (A)m 5 0, ν 5 0:5, and (B) m 5 1 versus different ν.


               For m 5 1, one delay element will be added to the normal map transform-
            ing the map into a 2D-map as follows:
                         x n11 5 xð0Þ 1 μx n ð1 2 x n Þ 1 μνx n21 ð1 2 x n21 Þ:  ð13:8Þ



            13.3.1.1 Fixed Points Analysis
            For the ease of mathematical analysis of this second order map (13.8),itis first
            converted to a first order one. A new variable is introduced to be y n11 5 x n .
            Thus, the difference equation can be expressed as the following pair:
                           x n11 5 xð0Þ 1 μx n ð1 2 x n Þ 1 μνy n ð1 2 y n Þ;  ð13:9aÞ
                                        y n11 5 x n :                ð13:9bÞ
               The   fixed  points  are  calculated  by  solving  the  equation

            Fðx ; y Þ 5 ðx ; y Þ, where the fixed points of this map are:

                                             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                  1
                                                     2
                         x ; y 5      k 1 1 1  ðk   1Þ   4kxð0Þ ;
                                  2
                                                     !
                                   q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                         1                 2
                            k 1 1 1  ðk   1Þ   4kxð0Þ  ;             ð13:10Þ
                         2
            where k 5  1   and the solution with the minus sign is rejected.
                     μð1 1 νÞ
   396   397   398   399   400   401   402   403   404   405   406