Page 229 - Matrix Analysis & Applied Linear Algebra
P. 229

224              Chapter 4                                              Vector Spaces

                                    minimal. The distance from (t i ,b i ) to a line f(t)= α + βt is
                                                        ε i = |f(t i ) − b i | = |α + βt i − b i |,
                                    so that the objective is to find values for α and β such that
                                                     m       m
                                                         2                 2
                                                        ε =    (α + βt i − b i )  is minimal.
                                                         i
                                                     i=1    i=1
                                    Minimization techniques from calculus tell us that the minimum value must
                                    occur at a solution to the two equations

                                                        m             2
                                                   ∂    i=1  (α + βt i − b i )
                                                                             m
                                               0=                        =2     (α + βt i − b i ) ,
                                                            ∂α
                                                                             i=1

                                                        m             2

                                                   ∂       (α + βt i − b i )  m
                                                        i=1
                                               0=                        =2     (α + βt i − b i ) t i .
                                                            ∂β
                                                                             i=1
                                    Rearranging terms produces two equations in the two unknowns α and β

                                                         m           m          m

                                                            1  α +      t i  β =  b i ,
                                                         i=1         i=1       i=1
                                                                                                   (4.6.1)
                                                         m           m          m

                                                                        2
                                                            t i  α +    t i  β =  t i b i .
                                                         i=1         i=1       i=1
                                    By setting
                                                     1   t 1          b 1
                                                                      
                                                    1   t 2        b 2 
                                                                                          α
                                               A =    .  .   ,  b =    .    ,  and  x =  ,
                                                    .                                    β
                                                                       .
                                                      .  . .        . 
                                                     1  t m           b m
                                                                                             T
                                                                                                      T
                                    we see that the two equations (4.6.1) have the matrix form A Ax = A b.
                                    In other words, (4.6.1) is the system of normal equations associated with the
                                    system Ax = b (see p. 213). The t i ’s are assumed to be distinct numbers,
                                    so rank (A)=2, and (4.5.7) insures that the normal equations have a unique
                                    solution given by
                                                        −1
                                                   T       T
                                             x = A A     A b
                                                                       2
                                                        1             t i  −  t i     b i
                                              =                2
                                                      2
                                                 m   t − (  t i )  −  t i  m          t i b i
                                                      i
                                                        1           t 2 i     b i −     t i     t i b i
                                                                                            α
                                              =                2                        =       .
                                                      2
                                                 m   t − (  t i )  m   t i b i −  t i  b i  β
                                                      i
                                    Finally, notice that the total sum of squares of the errors is given by
                                                 m       m
                                                    2                  2           T
                                                   ε =     (α + βt i − b i ) =(Ax − b) (Ax − b).
                                                    i
                                                i=1     i=1
   224   225   226   227   228   229   230   231   232   233   234